The converse of an implication statement \( A \Rightarrow B \) is \( B \Rightarrow A \).
For the given statement \( ((\sim p) \land q) \Rightarrow r \), its converse is \( r \Rightarrow ((\sim p) \land q) \).
Rewriting \( r \Rightarrow ((\sim p) \land q) \) in terms of logical equivalence:
\[
\sim r \Rightarrow (\sim (\sim p) \lor (\sim q)) \Rightarrow (p \lor (\sim q)).
\]
This simplifies to \( (p \lor (\sim q)) \Rightarrow (\sim r) \).
Conclusion: The converse is \( (p \lor (\sim q)) \Rightarrow (\sim r) \).