Question:

The converse of \( ((\sim p) \land q) \Rightarrow r \) is:

Show Hint

The converse of \( A \Rightarrow B \) is \( B \Rightarrow A \). Ensure to use logical equivalence rules for simplification.
Updated On: Jan 16, 2025
  • \( ((\sim p) \lor q) \Rightarrow r \)
  • \( (\sim r) \Rightarrow p \land q \)
  • \( (p \lor (\sim q)) \Rightarrow (\sim r) \)
  • \( (\sim r) \Rightarrow ((\sim p) \land q) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The converse of an implication statement \( A \Rightarrow B \) is \( B \Rightarrow A \).
For the given statement \( ((\sim p) \land q) \Rightarrow r \), its converse is \( r \Rightarrow ((\sim p) \land q) \).
Rewriting \( r \Rightarrow ((\sim p) \land q) \) in terms of logical equivalence: \[ \sim r \Rightarrow (\sim (\sim p) \lor (\sim q)) \Rightarrow (p \lor (\sim q)). \] This simplifies to \( (p \lor (\sim q)) \Rightarrow (\sim r) \).
Conclusion: The converse is \( (p \lor (\sim q)) \Rightarrow (\sim r) \).
Was this answer helpful?
0
0