The line of intersection of the two planes is parallel to the cross product of the normal vectors of the planes.
The normal vectors are:
\[
\overrightarrow{n_1} = 3\hat{i} - \hat{j} + \hat{k}, \quad \overrightarrow{n_2} = \hat{i} + 4\hat{j} - 2\hat{k}.
\]
The direction vector of the line is given by:
\[
\overrightarrow{d} = \overrightarrow{n_1} \times \overrightarrow{n_2}.
\]
Compute the cross product:
\[
\overrightarrow{d} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3 & -1 & 1 \\
1 & 4 & -2
\end{vmatrix}.
\]
Expand the determinant:
\[
\overrightarrow{d} = \hat{i} \begin{vmatrix} -1 & 1 \\ 4 & -2 \end{vmatrix}
- \hat{j} \begin{vmatrix} 3 & 1 \\ 1 & -2 \end{vmatrix}
+ \hat{k} \begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix}.
\]
\[
\overrightarrow{d} = \hat{i}((-1)(-2) - (1)(4)) - \hat{j}((3)(-2) - (1)(1)) + \hat{k}((3)(4) - (-1)(1)).
\]
Simplify:
\[
\overrightarrow{d} = \hat{i}(2 - 4) - \hat{j}(-6 - 1) + \hat{k}(12 + 1).
\]
\[
\overrightarrow{d} = -2\hat{i} + 7\hat{j} + 13\hat{k}.
\]
Thus, the direction vector is:
\[
\boxed{-2\hat{i} + 7\hat{j} + 13\hat{k}}.
\]