Question:

The negative of \( (p \land (\sim q)) \lor (\sim p) \) is equivalent to:

Show Hint

Use De Morgan’s laws to simplify the negation of logical statements: \[ \sim (A \lor B) = (\sim A \land \sim B) \quad \text{and} \quad \sim (A \land B) = (\sim A \lor \sim B). \]
Updated On: Jan 16, 2025
  • \( p \land q \)
  • \( p \land (\sim q) \)
  • \( p \land (q \land (\sim p)) \)
  • \( p \lor (q \lor (\sim p)) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To find the negative of \( (p \land (\sim q)) \lor (\sim p) \): \[ \sim \big[(p \land (\sim q)) \lor (\sim p)\big] \] Using De Morgan's laws: \[ \big[\sim (p \land (\sim q)) \land \sim (\sim p)\big] \] Simplifying further: \[ \big[(\sim p \lor q) \land p\big] \] Combining terms: \[ p \land q \] Conclusion: The negative of \( (p \land (\sim q)) \lor (\sim p) \) is \( p \land q \).
Was this answer helpful?
0
0