We are given the expression \( \sqrt{3} \csc 20^\circ - \sec 20^\circ \), and we need to simplify it step by step.
Step 1: Express the terms using basic trigonometric identities.
We know the following basic trigonometric identities:
\[
\csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}.
\]
Therefore,
\[
\csc 20^\circ = \frac{1}{\sin 20^\circ}, \quad \sec 20^\circ = \frac{1}{\cos 20^\circ}.
\]
Substituting these into the original expression gives:
\[
\sqrt{3} \csc 20^\circ - \sec 20^\circ = \sqrt{3} \times \frac{1}{\sin 20^\circ} - \frac{1}{\cos 20^\circ}.
\]
Step 2: Find an approximation for \( \sin 20^\circ \) and \( \cos 20^\circ \).
Using known values or a calculator, we approximate:
\[
\sin 20^\circ \approx 0.3420, \quad \cos 20^\circ \approx 0.9397.
\]
Substitute these values into the expression:
\[
\sqrt{3} \times \frac{1}{0.3420} - \frac{1}{0.9397}.
\]
Step 3: Simplify the expression.
Now, calculate the individual terms:
\[
\sqrt{3} \approx 1.732,
\]
\[
\frac{1.732}{0.3420} \approx 5.06, \quad \frac{1}{0.9397} \approx 1.064.
\]
Thus, the expression becomes:
\[
5.06 - 1.064 = 4.
\]
Step 4: Conclusion.
The value of \( \sqrt{3} \csc 20^\circ - \sec 20^\circ \) is approximately 4.