The variance of a probability distribution is given by the formula:
\[
\text{Variance} = E(X^2) - (E(X))^2
\]
Where:
- \(E(X)\) is the expected value (mean) of the distribution,
- \(E(X^2)\) is the expected value of \(X^2\).
Step 1: Calculate \(E(X)\), the expected value:
\[
E(X) = \sum x \cdot P(X)
\]
\[
E(X) = (0 \times \frac{9}{16}) + (1 \times \frac{3}{8}) + (2 \times \frac{1}{16})
\]
\[
E(X) = 0 + \frac{3}{8} + \frac{2}{16} = \frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}
\]
Step 2: Calculate \(E(X^2)\), the expected value of \(X^2\):
\[
E(X^2) = \sum x^2 \cdot P(X)
\]
\[
E(X^2) = (0^2 \times \frac{9}{16}) + (1^2 \times \frac{3}{8}) + (2^2 \times \frac{1}{16})
\]
\[
E(X^2) = 0 + \frac{3}{8} + \frac{4}{16} = \frac{3}{8} + \frac{1}{4} = \frac{3}{8} + \frac{2}{8} = \frac{5}{8}
\]
Step 3: Calculate the variance:
\[
\text{Variance} = E(X^2) - (E(X))^2
\]
\[
\text{Variance} = \frac{5}{8} - \left(\frac{1}{2}\right)^2 = \frac{5}{8} - \frac{2}{8} = \frac{3}{8}
\]
Conclusion: The variance of the given probability distribution is \(\frac{3}{8}\).