We are given the following conditions:
\[
\alpha + \beta = \frac{\pi}{2}, \quad \beta + \gamma = \alpha.
\]
From the first condition, we can express \(\alpha\) as:
\[
\alpha = \frac{\pi}{2} - \beta.
\]
Substitute this expression for \(\alpha\) in the second condition:
\[
\beta + \gamma = \frac{\pi}{2} - \beta.
\]
Rearrange this to solve for \(\gamma\):
\[
\gamma = \frac{\pi}{2} - 2\beta.
\]
Now, we need to find \(\tan\alpha\). Using the identity for \(\alpha = \frac{\pi}{2} - \beta\), we have:
\[
\tan\alpha = \tan\left(\frac{\pi}{2} - \beta\right) = \cot\beta.
\]
Next, express \(\cot\beta\) in terms of \(\tan\beta\):
\[
\cot\beta = \frac{1}{\tan\beta}.
\]
Now, from the expression for \(\gamma\), we know \(\gamma = \frac{\pi}{2} - 2\beta\). Therefore:
\[
\tan\gamma = \tan\left(\frac{\pi}{2} - 2\beta\right) = \cot(2\beta).
\]
Using the double angle identity for cotangent:
\[
\cot(2\beta) = \frac{1 - \tan^2\beta}{2\tan\beta}.
\]
Substitute this into the equation for \(\tan\alpha\):
\[
\tan\alpha = \tan\beta + 2\tan\gamma = \tan\beta + 2 \cdot \frac{1 - \tan^2\beta}{2\tan\beta}.
\]
Simplify the equation:
\[
\tan\alpha = \tan\beta + \frac{1 - \tan^2\beta}{\tan\beta}.
\]
Thus, the value of \(\tan\alpha\) is:
\[
\tan\alpha = \tan\beta + 2\tan\gamma.
\]