>
Mathematics
List of top Mathematics Questions
The straight line \( r = (i - j + k) + \lambda (2i + j - k) \) and the plane \( r \cdot (2i + j - k) = 4 \) are
IPU CET - 2016
IPU CET
Mathematics
3D Geometry
\[ \int_{-\pi/2}^{\pi/2} |\sin x| dx \text{ equals to} \]
IPU CET - 2016
IPU CET
Mathematics
Integration
Choose the most appropriate options.
The period of the function \(f(x) = |\sin x| - |\cos x|\) is
IPU CET - 2016
IPU CET
Mathematics
Limits
$ \lim_{x \to 0} \frac{a^x - 1}{x} $ is equal to
IPU CET - 2016
IPU CET
Mathematics
Limits
$\lim_{x \to 0} \frac{\tan^{-1} \left( \frac{-x}{\sqrt{1 - x^2}} \right)}{\ln(1 - x)} =\ ?$
IPU CET - 2016
IPU CET
Mathematics
Limits
\(\lim_{x \to \infty} \frac{\ln x}{x^n}\) is equal to
IPU CET - 2016
IPU CET
Mathematics
Limits
Find the derivative of
\[ y = (1 - x)^m (1 + x)^n \text{ at } x = 0, \text{ where } m, n>0 \]
IPU CET - 2016
IPU CET
Mathematics
Differentiation
What is the number of ordered pairs of real numbers
(a, b)
such that
\[ (a + bi)^{2002} = a - bi \]
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
$ (1 + 2i)^6 $ is equal to:
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
Find the component of the vector a = (-1, 2, 0) perpendicular to the plane of the vectors \(\mathbf{e}_1(1, 0, 1)\) and \(\mathbf{e}_2(1, 1, 1)\)
IPU CET - 2016
IPU CET
Mathematics
Vectors
A real solution of the equation
\[ \cosh x - 5 \sinh x - 5 = 0 \text{ is} \]
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
\[ \frac{1}{2 \sin 10^\circ} - 2 \sin 70^\circ \text{ is equal to} \]
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
Given \(\varepsilon = \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right)\), find the value of \[ \prod_{k=0}^{n-1} \left( \varepsilon^2k - 2\varepsilon k \cos \theta + 1 \right) \]
IPU CET - 2016
IPU CET
Mathematics
Trigonometric Functions
\[ \int \frac{x^2}{(x \sin x + \cos x)^2} dx \text{ is equal to} \]
IPU CET - 2016
IPU CET
Mathematics
Integration
If \(P(x)\) is a polynomial such that \[ P(x^2 + 1) = \{P(x)\}^2 + 1 \] then \(P'(0)\) is equal to
IPU CET - 2016
IPU CET
Mathematics
Polynomials
Find the real solution of the system of equations: \[ x^4 + y^4 - x^2 y^2 = 13,\quad x^2 - y^2 + 2xy = 1 \] Satisfying condition: \( xy \geq 0 \)
IPU CET - 2016
IPU CET
Mathematics
Algebra
Find the points of intersection of the given surface $\frac{x^2}{81} + \frac{y^2}{36} + \frac{z^2}{4} = 1$ and the straight line $\frac{x - 3}{3} = \frac{y - 4}{-6} = \frac{z + 2}{4}$
IPU CET - 2016
IPU CET
Mathematics
3D Geometry
If \(y^{\frac{1}{m}} + x^{\frac{1}{m}} = 2x\) then
IPU CET - 2016
IPU CET
Mathematics
Differential Equations
What is the shape of the figure given by the following equations?
IPU CET - 2016
IPU CET
Mathematics
Conic sections
What is the equation of the curve traced by point \(M\), if the sum of distances to \(A(-1, -1)\) and \(B(1, 1)\) is constant and equals \(2\sqrt{3}\)?
IPU CET - 2016
IPU CET
Mathematics
Conic sections
If \(i = \sqrt{-1}\), then \[ \lim_{n \to \infty} \frac{(n + 2i)(3 + 7in)}{(2 - i)(6n^2 + 1)} \] is equal to:
IPU CET - 2016
IPU CET
Mathematics
Limits
If \(y = \sec(\tan^{-1} x)\), then \(y\) at \(x = 1\) is equal to term is the sum of two preceding terms. Then, the common ratio of the G.P. is:
IPU CET - 2016
IPU CET
Mathematics
geometric progression
Every term of G.P. is positive and also every term is the sum of two preceding terms. Then, the common ratio of the G.P. is
IPU CET - 2016
IPU CET
Mathematics
geometric progression
Which of the following complex numbers is conjugate to its square?
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
Let \( a = \cos \theta_1 + i \sin \theta_1 \), \( b = \cos \theta_2 + i \sin \theta_2 \), \( c = \cos \theta_3 + i \sin \theta_3 \) and \( a + b + c = 0 \), then \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = ? \]
IPU CET - 2016
IPU CET
Mathematics
Complex Numbers
Prev
1
...
818
819
820
821
822
...
1168
Next