Let’s compute the numerator and denominator separately as \(n \to \infty\):
\[
(n + 2i)(3 + 7in) = 3n + 6i + 7in^2 + 14i^2n = 7in^2 - 14n + 3n + 6i = 7in^2 - 11n + 6i
\]
\[
\text{Denominator} = (2 - i)(6n^2 + 1)
\Rightarrow \text{As } n \to \infty, \lim = \frac{7in^2}{6n^2(2 - i)} = \frac{7i}{6(2 - i)} \cdot \frac{2 + i}{2 + i} = \frac{7i(2 + i)}{6(4 + 1)} = \frac{7i(2 + i)}{30}
\]
\[
= \frac{7(2i + i^2)}{30} = \frac{7(2i - 1)}{30} = -\frac{7}{30} + \frac{14}{30}i = -\frac{7}{30} + \frac{7}{15}i
\]