>
Exams
>
Mathematics
>
Limits
>
if i sqrt 1 then lim n to infty frac n 2i 3 7in 2
Question:
If \(i = \sqrt{-1}\), then \[ \lim_{n \to \infty} \frac{(n + 2i)(3 + 7in)}{(2 - i)(6n^2 + 1)} \] is equal to:
IPU CET - 2016
IPU CET
Updated On:
Dec 11, 2025
\(-\frac{7}{5}\)
\(\frac{14}{5} - \frac{7}{5}i\)
\(\frac{7}{5} - \frac{14}{5}i\)
\(-\frac{7}{30} + \frac{7}{15}i\)
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
Let’s compute the numerator and denominator separately as \(n \to \infty\): \[ (n + 2i)(3 + 7in) = 3n + 6i + 7in^2 + 14i^2n = 7in^2 - 14n + 3n + 6i = 7in^2 - 11n + 6i \] \[ \text{Denominator} = (2 - i)(6n^2 + 1) \Rightarrow \text{As } n \to \infty, \lim = \frac{7in^2}{6n^2(2 - i)} = \frac{7i}{6(2 - i)} \cdot \frac{2 + i}{2 + i} = \frac{7i(2 + i)}{6(4 + 1)} = \frac{7i(2 + i)}{30} \] \[ = \frac{7(2i + i^2)}{30} = \frac{7(2i - 1)}{30} = -\frac{7}{30} + \frac{14}{30}i = -\frac{7}{30} + \frac{7}{15}i \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
Let \(f: R \to (0, \infty)\) be a twice differentiable function such that \(f(3) = 18\), \(f'(3)=0\) and \(f''(3) = 4\). Then \(\lim_{x \to 1} \log_e \left[ \frac{f(2+x)}{f(3)} \right]^{\frac{18}{(x-1)^2}}\) is equal to:
JEE Main - 2026
Mathematics
Limits
View Solution
Let \( f(x) = \int \frac{(2 - x^2) \cdot e^x{(\sqrt{1 + x})(1 - x)^{3/2}} dx \). If \( f(0) = 0 \), then \( f\left(\frac{1}{2}\right) \) is equal to :}
JEE Main - 2026
Mathematics
Limits
View Solution
The value of \[ \lim_{x\to 0}\frac{\log_e\!\big(\sec(ex)\cdot \sec(e^2x)\cdots \sec(e^{10}x)\big)} {e^2-e^{2\cos x}} \] is equal to:
JEE Main - 2026
Mathematics
Limits
View Solution
If the function \[ f(x)=\frac{e^x\left(e^{\tan x - x}-1\right)+\log_e(\sec x+\tan x)-x}{\tan x-x} \] is continuous at $x=0$, then the value of $f(0)$ is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
If \[ \lim_{x\to 0} \frac{e^{(a-1)x}+2\cos bx+(c-2)e^{-x}} {x\cos x-\log_e(1+x)} =2, \] then \(a^2+b^2+c^2\) is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
View More Questions
Questions Asked in IPU CET exam
The value of $\sin 20^\circ \times \sin 40^\circ \times \sin 60^\circ \times \sin 80^\circ$ is
IPU CET - 2025
Trigonometry
View Solution
The derivative of $e^{2x}\sin x$ with respect to $x$ is
IPU CET - 2025
Differentiation
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Vectors
View Solution
Synonym of ``Brief'' is
IPU CET - 2025
Synonyms
View Solution
Spot the error: ``I prefer coffee than tea.''
IPU CET - 2025
Vocabulary
View Solution
View More Questions