\((x^2 + 1) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - m^2 y = 0\)
\((x^2 - 1) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - m^2 y = 0\)
\((x^2 + 1) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + m^2 y = 0\)
\((x^2 + 1) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0\)
Hide Solution
Verified By Collegedunia
The Correct Option isC
Solution and Explanation
Let \(z = y^{1/m} \Rightarrow z + x^{1/m} = 2x\)
Differentiate twice and rearrange using chain rule. Eventually, you’ll reach option (c) as satisfying the condition.