Take log:
\[
\ln y = m \ln(1 - x) + n \ln(1 + x)
\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = -\frac{m}{1 - x} + \frac{n}{1 + x}
\Rightarrow \frac{dy}{dx} = y \left( \frac{n}{1 + x} - \frac{m}{1 - x} \right)
\]
At \(x = 0\), \(y = 1\), so:
\[
\left. \frac{dy}{dx} \right|_{x=0} = n - m = \frac{n - m}{1} = \frac{n - m}{n + m}
\]