Find the normal to the plane using cross product of \(\mathbf{e}_1 = (1, 0, 1)\) and \(\mathbf{e}_2 = (1, 1, 1)\):
\[
\mathbf{n} = \mathbf{e}_1 \times \mathbf{e}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}
1 & 0 & 1
1 & 1 & 1
\end{vmatrix} = (-1, 0, 1)
\]
Now project vector \(\mathbf{a} = (-1, 2, 0)\) on \(\mathbf{n}\):
\[
\text{proj}_{\mathbf{n}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{n}}{|\mathbf{n}|^2} \cdot \mathbf{n} = \frac{(-1)(-1) + 0 + (0)(1)}{(-1)^2 + 1^2} \cdot (-1, 0, 1) = \frac{1}{2} \cdot (-1, 0, 1) = \left(-\frac{1}{2}, 0, \frac{1}{2}\right)
\]