Let \(z = a + bi\), then \(\bar{z} = a - bi\)
Given \(z^{2002} = \bar{z} \Rightarrow |z|^{2002} = |\bar{z}|\),
Write \(z = re^{i\theta} \Rightarrow z^{2002} = r^{2002} e^{i2002\theta} = r e^{-i\theta}\)
Equating:
\[
r^{2001} e^{i2003\theta} = 1 \Rightarrow r^{2001} = 1, e^{i2003\theta} = 1 \Rightarrow \theta = \frac{2\pi k}{2003}
\]
So total = 2003 values of \(\theta\) with one extra when \(b = 0\), total = 2004 real (a, b) pairs.