>
Mathematics
List of top Mathematics Questions
If A=(2, 3), B = (-1, 0), C = (4, 6) then area of the parallelogram ABCD is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Area Of A Parallelogram
The value of tan(cos
-1
x) is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
Which of the following is a correct statement ?
CUET (UG) - 2023
CUET (UG)
Mathematics
Statistics
If
\(A= \begin{bmatrix}1&√3&0 \\-√3&1&0 \\ 0&0&2 \end{bmatrix}\)
and
\(B=\begin{bmatrix}√3&1&0 \\-1&√3&0 \\ 0&0&2 \end{bmatrix}\)
then AB is equal to :
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
Domain of function
\(f(x) = cos^{-1}\sqrt {2x-1}\)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
The domain of the function f(x) = log
\((x^2-4)\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
For real numbers a and b, define aRb if b-a+√5 is an irrational number. Then the relation R is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
For the problem max Z = ax + by, x≥0, y ≥0, which of the following is NOT a valid constraint to make it a linear programming problem?
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
The maximum value of Z = 3x + 4y subject to constraint x + y ≤6, x, y ≥ 0 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
If a discrete random variable X has the following probability distribution:
X
\(\frac{2}{3}\)
1
\(\frac{4}{3}\)
P(X)
\(c^2\)
\(c^2\)
c
then c is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability Distribution
A discrete random variable X has the following probability distribution:
X
1
2
3
4
5
6
P(X)
\(\frac{2}{k}\)
\(\frac{4}{k}\)
\(\frac{1}{k}\)
\(\frac{2}{k}\)
\(\frac{3}{k}\)
\(\frac{5}{k}\)
The value of k is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability Distribution
The equation of the curve whose slope is given by
\(\frac{dy}{dx}=\frac{4x}{y}\)
, x>0,y>0 and which passes through the point (2, 2) is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Coordinate Geometry
The sum of the order and degree of differential equation
\(2x^3\left(\frac{d^2y}{dx^2}\right)^4 + \frac{d^3y}{dx^3}+y=0\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
Area bounded by y=|x-5| and x-axis between x = 2; and x = 4 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
The value of
\(∫(5x-2)^3\)
dx is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Integration
If
\(f(x)=-3x^2\)
, then f(x) is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Increasing and Decreasing Functions
The slope of normal to the curve
\(y = 3x^2-6x\)
at x = 0 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Curves
If A is a square matrix of order 3 such that |A|= 2, then the value of |adj(adj A)| is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Adjoint and Inverse of a Matrix
The area of a triangle with vertices (0, -3), (0, 3) and (k, 0) is 27 sq.units. The value of k is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Area of a Triangle - by Heron’s Formula
If
\(\begin{bmatrix} 4x & 5x-7 \\[0.3em] 4x & 2x+y\end{bmatrix}\)
=
\(\begin{bmatrix} x+6 & y \\[0.3em] 7y-13 & 7\end{bmatrix}\)
then the value of 2x + y is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
If A =
\(\begin{bmatrix} 2 & 1 \\[0.3em] 1 & 4 \\[0.3em] -1 & 6 \\[0.3em] 0&7 \end{bmatrix}\)
and B=
\(\begin{bmatrix} 1 & 2&3&0 \\[0.3em] 2 & -1 & 6&7\end{bmatrix}\)
then
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
The equation
\(r^2=cos^2(\theta-\frac{\pi}{3})=2\)
represents
WBJEE - 2023
WBJEE
Mathematics
Derivatives of Functions in Parametric Forms
The value of
\(\begin{vmatrix} \sin^2 14 \degree & \sin^2 66\degree & \tan 135\degree \\ \sin^2 66\degree & \tan 135\degree & \sin^2 14 \degree \\ \tan 135\degree & \sin^2 14 \degree & \sin^2 66\degree \end{vmatrix}\)
KCET - 2023
KCET
Mathematics
Trigonometric Identities
Consider the following statements (A) and (B):
\[ \text{(A):} \quad \int_a^b \frac{d}{dx} \left( f(x) \right) dx = \frac{d}{dx} \int_a^b f(x) dx \] \[ \text{(B):} \quad \frac{d}{dx} \left( \int f(x) dx \right) = f(x) + C \]
Which one of the following is True?
AP EAPCET - 2023
AP EAPCET
Mathematics
integral
Let $ [t] $ represent the greatest integer not exceeding $ t $. The number of discontinuous points of $ [10^t] $ in $ (0, 10) $ is:
AP EAPCET - 2023
AP EAPCET
Mathematics
Fundamental Theorem of Calculus
Prev
1
...
410
411
412
413
414
...
984
Next