Step 1: Apply the Cosine Rule
The cosine of the angles in a triangle can be expressed as:
\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab}.
\]
Step 2: Set Up the Summation
The desired summation is:
\[
\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}.
\]
Substituting the cosine formulas:
\[
= \frac{1}{a} \cdot \frac{b^2 + c^2 - a^2}{2bc} + \frac{1}{b} \cdot \frac{a^2 + c^2 - b^2}{2ac} + \frac{1}{c} \cdot \frac{a^2 + b^2 - c^2}{2ab}.
\]
Step 3: Simplify the Expression
\[
= \frac{b^2 + c^2 - a^2}{2abc} + \frac{a^2 + c^2 - b^2}{2abc} + \frac{a^2 + b^2 - c^2}{2abc}.
\]
Now, combine the terms:
\[
= \frac{(b^2 + c^2 - a^2) + (a^2 + c^2 - b^2) + (a^2 + b^2 - c^2)}{2abc}.
\]
Simplifying further:
\[
= \frac{a^2 + b^2 + c^2}{2abc}.
\]