Step 1: Use the Power Reduction Formula
\[
\cos^2 x = \frac{1 + \cos 2x}{2}.
\]
Step 2: Substitute into the Integral
\[
\int_{0}^{\frac{\pi}{2}} \cos^2 x \,dx = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} dx.
\]
Splitting:
\[
= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} dx + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2x \,dx.
\]
Step 3: Evaluate Each Integral
\[
\frac{1}{2} \left[ x \right]_{0}^{\frac{\pi}{2}} + \frac{1}{2} \left[ \frac{\sin 2x}{2} \right]_{0}^{\frac{\pi}{2}}.
\]
\[
= \frac{1}{2} \times \frac{\pi}{2} + \frac{1}{2} \times 0.
\]
\[
= \frac{\pi}{4}.
\]