Step 1: Find Slopes of the Lines
The given equation represents two straight lines passing through the origin. The slopes are given by:
\[
m_1, m_2 = \frac{- (h \pm \sqrt{h^2 - ab})}{b}.
\]
Step 2: Use the Angle Formula
\[
\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.
\]
Substituting values:
\[
\tan \theta = \left| \frac{ \frac{-h + \sqrt{h^2 - ab}}{b} - \frac{-h - \sqrt{h^2 - ab}}{b} }{1 + \left( \frac{-h + \sqrt{h^2 - ab}}{b} \right) \left( \frac{-h - \sqrt{h^2 - ab}}{b} \right) } \right|.
\]
\[
= \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|.
\]
Step 3: Condition for Coincidence
For coincident lines, \( \theta = 0 \), which means:
\[
h^2 - ab = 0 \quad \Rightarrow \quad h^2 = ab.
\]