Step 1: Use the Probability Density Function Property
The total probability must be 1:
\[
\int_{0}^{1} f(x) dx = 1.
\]
Step 2: Compute the Integral
\[
\int_{0}^{1} kx^2(1 - x) dx = 1.
\]
Expanding:
\[
\int_{0}^{1} k (x^2 - x^3) dx = 1.
\]
Step 3: Evaluate the Integrals
\[
k \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_{0}^{1} = 1.
\]
\[
k \left( \frac{1}{3} - \frac{1}{4} \right) = 1.
\]
\[
k \left( \frac{4 - 3}{12} \right) = 1.
\]
\[
k \times \frac{1}{12} = 1.
\]
\[
k = 12.
\]