Step 1: Apply Definite Integration for Area
The area under the curve is given by the integral:
\[
A = \int_{1}^{2} x^2 \,dx.
\]
Step 2: Compute the Integral
Evaluating the integral, we get:
\[
A = \left[ \frac{x^3}{3} \right]_{1}^{2}.
\]
\[
= \frac{2^3}{3} - \frac{1^3}{3}.
\]
\[
= \frac{8}{3} - \frac{1}{3} = \frac{7}{3}.
\]