Using the identity \( \sin^2 x = \frac{1 - \cos 2x}{2} \):
\[
\int_{-\pi/2}^{\pi/2} \sin^2 x \, dx = \int_{-\pi/2}^{\pi/2} \frac{1 - \cos 2x}{2} \, dx.
\]
Separate the terms:
\[
\int_{-\pi/2}^{\pi/2} \sin^2 x \, dx = \frac{1}{2} \int_{-\pi/2}^{\pi/2} 1 \, dx - \frac{1}{2} \int_{-\pi/2}^{\pi/2} \cos 2x \, dx.
\]
The first term evaluates to:
\[
\frac{1}{2} \int_{-\pi/2}^{\pi/2} 1 \, dx = \frac{1}{2} \left[ x \right]_{-\pi/2}^{\pi/2} = \frac{1}{2} (\pi - (-\pi)) = \frac{\pi}{2}.
\]
The second term evaluates to 0 because \( \cos 2x \) is an odd function. Thus:
\[
\int_{-\pi/2}^{\pi/2} \sin^2 x \, dx = \frac{\pi}{2}.
\]