Step 1: Use Standard Integral Formula
The standard formula for the given integral is:
\[
\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C.
\]
Step 2: Proof via Partial Fractions
Rewriting:
\[
\frac{1}{a^2 - x^2} = \frac{1}{(a - x)(a + x)}.
\]
Using partial fractions:
\[
\frac{1}{(a - x)(a + x)} = \frac{A}{a - x} + \frac{B}{a + x}.
\]
Solving for \( A \) and \( B \), we obtain:
\[
A = \frac{1}{2a}, \quad B = -\frac{1}{2a}.
\]
Step 3: Integrate
\[
\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \int \frac{dx}{a + x} - \frac{1}{2a} \int \frac{dx}{a - x}.
\]
\[
= \frac{1}{2a} \log |a + x| - \frac{1}{2a} \log |a - x|.
\]
\[
= \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C.
\]