We are given the matrix \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 3 \\ 5 & 2 & -1 \end{bmatrix} \] and we need to find its inverse.
Step 1: First, calculate the determinant of matrix \( A \). \[ \text{det}(A) = 1 \times \begin{vmatrix} 3 & 3 \\ 2 & -1 \end{vmatrix} - 0 \times \begin{vmatrix} 3 & 3 \\ 5 & -1 \end{vmatrix} + 0 \times \begin{vmatrix} 3 & 3 \\ 5 & 2 \end{vmatrix} \] \[ \text{det}(A) = 1 \times ((3 \times (-1)) - (3 \times 2)) = 1 \times (-3 - 6) = -9 \]
Step 2: Now, calculate the adjoint of matrix \( A \). The adjoint is the transpose of the cofactor matrix.
Step 3: Using the formula for the inverse of a matrix \( A^{-1} = \frac{1}{\text{det}(A)} \times \text{adj}(A) \), we find: \[ A^{-1} = \frac{1}{-9} \times \text{adj}(A) \]
Conclusion: The correct inverse matrix is: \[ A^{-1} = \frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix} \]
If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$: