>
Exams
>
Mathematics
>
Integral Calculus
>
integrate the following function w r t x int frac
Question:
Integrate the following function w.r.t. $x$: $\int \frac{e^{3x}}{e^{3x} + 1} \, dx$
Show Hint
To simplify integrals with exponential functions, use substitution to transform the integral into a standard form.
MHT CET - 2024
MHT CET
Updated On:
Jan 13, 2026
\( \frac{1}{3} \ln \left( e^{3x} + 1 \right) + C \)
\( \frac{1}{3} \ln \left( e^{3x} - 1 \right) + C \)
\( \frac{1}{3} \ln \left( e^{3x} + e^x \right) + C \)
\( \frac{1}{2} \ln \left( e^{3x} + 1 \right) + C \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1:
Observe the integral and try substitution. Let: \[ u = e^{3x} + 1 \quad \Rightarrow \quad du = 3e^{3x} dx \] \[ \text{Thus,} \quad \frac{e^{3x}}{e^{3x} + 1} dx = \frac{1}{3} \cdot \frac{du}{u} \]
Step 2:
Now, the integral becomes: \[ \int \frac{1}{3} \cdot \frac{du}{u} = \frac{1}{3} \ln |u| + C \] \[ \text{Substitute back } u = e^{3x} + 1: \] \[ \frac{1}{3} \ln |e^{3x} + 1| + C \] Thus, the solution is: \[ \frac{1}{3} \ln (e^{3x} + 1) + C \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integral Calculus
If
\[ I(x) = 3\int \frac{dx}{(4x+6)\sqrt{4x^2 + 8x + 3}}, \quad I(0) = \frac{\sqrt{3}}{4}, \]
then find \( I(1) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If \[ \int e^x \left( \frac{x^2 - 2}{\sqrt{1 + x(1 - x)^{3/2}}} \right) \, dx = f(x) + c \quad \text{and} \quad f(0) = 1 \] find \( f\left( \frac{1}{2} \right) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
Find the area bounded by the curves
\[ x^2 + y^2 = 4 \quad \text{and} \quad x^2 + (y-2)^2 = 4. \]
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If
\[ \int_{0}^{x} t^2 \sin(x - t)\,dt = x^2, \]
then the sum of values of \( x \), where \( x \in [0,100] \), is:
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
The value of
\[ \int_{\frac{\pi}{2}}^{\pi} \frac{dx}{[x]+4} \]
where \([\,\cdot\,]\) denotes the greatest integer function, is
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions