Step 1: Observe the integral and try substitution. Let:
\[
u = e^{3x} + 1 \quad \Rightarrow \quad du = 3e^{3x} dx
\]
\[
\text{Thus,} \quad \frac{e^{3x}}{e^{3x} + 1} dx = \frac{1}{3} \cdot \frac{du}{u}
\]
Step 2: Now, the integral becomes:
\[
\int \frac{1}{3} \cdot \frac{du}{u} = \frac{1}{3} \ln |u| + C
\]
\[
\text{Substitute back } u = e^{3x} + 1:
\]
\[
\frac{1}{3} \ln |e^{3x} + 1| + C
\]
Thus, the solution is:
\[
\frac{1}{3} \ln (e^{3x} + 1) + C
\]