Question:

Integrate the following function w.r.t. x x : e3xe3x+1dx \int \frac{e^{3x}}{e^{3x} + 1} \, dx

Show Hint

To simplify integrals with exponential functions, use substitution to transform the integral into a standard form.
Updated On: Jan 16, 2025
  • 13ln(e3x+1)+C \frac{1}{3} \ln \left( e^{3x} + 1 \right) + C
  • 13ln(e3x1)+C \frac{1}{3} \ln \left( e^{3x} - 1 \right) + C
  • 13ln(e3x+ex)+C \frac{1}{3} \ln \left( e^{3x} + e^x \right) + C
  • 12ln(e3x+1)+C \frac{1}{2} \ln \left( e^{3x} + 1 \right) + C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Observe the integral and try substitution. Let: u=e3x+1du=3e3xdx u = e^{3x} + 1 \quad \Rightarrow \quad du = 3e^{3x} dx Thus,e3xe3x+1dx=13duu \text{Thus,} \quad \frac{e^{3x}}{e^{3x} + 1} dx = \frac{1}{3} \cdot \frac{du}{u} Step 2: Now, the integral becomes: 13duu=13lnu+C \int \frac{1}{3} \cdot \frac{du}{u} = \frac{1}{3} \ln |u| + C Substitute back u=e3x+1: \text{Substitute back } u = e^{3x} + 1: 13lne3x+1+C \frac{1}{3} \ln |e^{3x} + 1| + C Thus, the solution is: 13ln(e3x+1)+C \frac{1}{3} \ln (e^{3x} + 1) + C
Was this answer helpful?
0
0