>
Exams
>
Mathematics
>
Integral Calculus
>
integrate the following function w r t x int frac
Question:
Integrate the following function w.r.t.
x
x
x
:
∫
e
3
x
e
3
x
+
1
d
x
\int \frac{e^{3x}}{e^{3x} + 1} \, dx
∫
e
3
x
+
1
e
3
x
d
x
Show Hint
To simplify integrals with exponential functions, use substitution to transform the integral into a standard form.
MHT CET - 2024
MHT CET
Updated On:
Jan 16, 2025
1
3
ln
(
e
3
x
+
1
)
+
C
\frac{1}{3} \ln \left( e^{3x} + 1 \right) + C
3
1
ln
(
e
3
x
+
1
)
+
C
1
3
ln
(
e
3
x
−
1
)
+
C
\frac{1}{3} \ln \left( e^{3x} - 1 \right) + C
3
1
ln
(
e
3
x
−
1
)
+
C
1
3
ln
(
e
3
x
+
e
x
)
+
C
\frac{1}{3} \ln \left( e^{3x} + e^x \right) + C
3
1
ln
(
e
3
x
+
e
x
)
+
C
1
2
ln
(
e
3
x
+
1
)
+
C
\frac{1}{2} \ln \left( e^{3x} + 1 \right) + C
2
1
ln
(
e
3
x
+
1
)
+
C
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1:
Observe the integral and try substitution. Let:
u
=
e
3
x
+
1
⇒
d
u
=
3
e
3
x
d
x
u = e^{3x} + 1 \quad \Rightarrow \quad du = 3e^{3x} dx
u
=
e
3
x
+
1
⇒
d
u
=
3
e
3
x
d
x
Thus,
e
3
x
e
3
x
+
1
d
x
=
1
3
⋅
d
u
u
\text{Thus,} \quad \frac{e^{3x}}{e^{3x} + 1} dx = \frac{1}{3} \cdot \frac{du}{u}
Thus,
e
3
x
+
1
e
3
x
d
x
=
3
1
⋅
u
d
u
Step 2:
Now, the integral becomes:
∫
1
3
⋅
d
u
u
=
1
3
ln
∣
u
∣
+
C
\int \frac{1}{3} \cdot \frac{du}{u} = \frac{1}{3} \ln |u| + C
∫
3
1
⋅
u
d
u
=
3
1
ln
∣
u
∣
+
C
Substitute back
u
=
e
3
x
+
1
:
\text{Substitute back } u = e^{3x} + 1:
Substitute back
u
=
e
3
x
+
1
:
1
3
ln
∣
e
3
x
+
1
∣
+
C
\frac{1}{3} \ln |e^{3x} + 1| + C
3
1
ln
∣
e
3
x
+
1∣
+
C
Thus, the solution is:
1
3
ln
(
e
3
x
+
1
)
+
C
\frac{1}{3} \ln (e^{3x} + 1) + C
3
1
ln
(
e
3
x
+
1
)
+
C
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integral Calculus
Find the value of the integral:
∫
0
e
log
e
x
d
x
\int_0^e \log_e x \, dx
∫
0
e
lo
g
e
x
d
x
JEE Main - 2025
Mathematics
Integral Calculus
View Solution
If
24
(
∫
0
π
4
[
sin
(
4
x
−
π
12
)
+
[
2
sin
x
]
]
d
x
)
=
2
n
+
α
,
24 \left( \int_0^\frac{\pi}{4} \left[ \sin \left( 4x - \frac{\pi}{12} \right) + [2 \sin x] \right] dx \right) = 2n + \alpha,
24
(
∫
0
4
π
[
sin
(
4
x
−
12
π
)
+
[
2
sin
x
]
]
d
x
)
=
2
n
+
α
,
where [.] denotes the greatest integer function, then
α
\alpha
α
is equal to:
JEE Main - 2025
Mathematics
Integral Calculus
View Solution
For the function
f
(
x
)
=
ln
(
x
2
+
1
)
f(x) = \ln(x^2 + 1)
f
(
x
)
=
ln
(
x
2
+
1
)
, what is the second derivative of
f
(
x
)
f(x)
f
(
x
)
?
JEE Main - 2025
Mathematics
Integral Calculus
View Solution
Find the value of the integral
∫
0
π
2
sin
2
(
x
)
d
x
\int_0^{\frac{\pi}{2}} \sin^2(x) \, dx
∫
0
2
π
sin
2
(
x
)
d
x
.
JEE Main - 2025
Mathematics
Integral Calculus
View Solution
If
∫
log
(
6
sin
2
x
+
17
sin
x
+
12
)
cos
x
d
x
=
f
(
x
)
+
c
\int \log \left( 6\sin^2x + 17\sin x + 12 \right)^{\cos x} \, dx = f(x) + c
∫
lo
g
(
6
sin
2
x
+
17
sin
x
+
12
)
c
o
s
x
d
x
=
f
(
x
)
+
c
then,
f
(
π
2
)
=
f\left(\frac{\pi}{2}\right) =
f
(
2
π
)
=
AP EAMCET - 2024
Mathematics
Integral Calculus
View Solution
View More Questions
Questions Asked in MHT CET exam
Let the following system of equations:
k
x
+
y
+
z
=
1
,
x
+
k
y
+
z
=
k
,
x
+
y
+
k
z
=
k
2
kx + y + z = 1, \quad x + ky + z = k, \quad x + y + kz = k^2
k
x
+
y
+
z
=
1
,
x
+
k
y
+
z
=
k
,
x
+
y
+
k
z
=
k
2
have no solution. Find
∣
k
∣
|k|
∣
k
∣
:
MHT CET - 2024
Geometric Progression
View Solution
The longest wavelength associated with the Paschen series is:
(Given
R
H
=
1.097
×
1
0
7
SI unit)
.
\text{(Given } R_H = 1.097 \times 10^7 \, \text{SI unit)}.
(Given
R
H
=
1.097
×
1
0
7
SI unit)
.
MHT CET - 2024
Kirchhoff's Laws
View Solution
Find the area of the region bounded by the parabola
y
2
=
4
a
x
and its latus rectum.
y^2 = 4ax \text{ and its latus rectum.}
y
2
=
4
a
x
and its latus rectum.
MHT CET - 2024
Parabola
View Solution
Force between two point charges
q
1
q_1
q
1
and
q
2
q_2
q
2
placed in vacuum at a distance
r
cm
r \, \text{cm}
r
cm
apart is
F
F
F
. Force between them when placed in a medium having dielectric
K
=
5
K = 5
K
=
5
at
r
/
5
cm
r/5 \, \text{cm}
r
/5
cm
apart will be:
MHT CET - 2024
VITEEE - 2024
Electric Charge
View Solution
What is the oxidation state of Fe in
F
e
3
O
4
\mathrm{Fe_3O_4}
F
e
3
O
4
?
MHT CET - 2024
States of matter
View Solution
View More Questions