Given a Binomial Distribution: \( B(7, p) \), where
\[
n = 7, \quad p = p
\]
We are provided:
\[
P(x = 3) = 5P(x = 4)
\]
Using the binomial probability formula:
\[
P(x = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]
Substitute \( n = 7 \) into the formula:
\[
\binom{7}{3} p^3 (1 - p)^4 = 5 \cdot \binom{7}{4} p^4 (1 - p)^3
\]
Simplify the binomial coefficients:
\[
\frac{\binom{7}{3}}{\binom{7}{4}} = \frac{p}{1 - p}
\]
\[
\binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}, \quad
\binom{7}{4} = \frac{7 \cdot 6 \cdot 5 \cdot 4}{4 \cdot 3 \cdot 2 \cdot 1}
\]
Simplifying further:
\[
\frac{\binom{7}{3}}{\binom{7}{4}} = \frac{p}{1 - p}
\]
Equating the powers of \( p \) and \( (1-p) \):
\[
1 - p = 5p
\]
Solve for \( p \):
\[
6p = 1 \implies p = \frac{1}{6}
\]
Thus:
\[
q = 1 - p = \frac{5}{6}
\]
Substitute \( n = 7, p = \frac{1}{6}, q = \frac{5}{6} \):
\[
\text{Mean} = np = 7 \times \frac{1}{6} = \frac{7}{6}
\]
\[
\text{Variance} = npq = 7 \times \frac{1}{6} \times \frac{5}{6} = \frac{35}{36}
\]
Finally, the sum of the mean and variance:
\[
\text{Sum} = \frac{7}{6} + \frac{35}{36}
\]
Simplify the fractions:
\[
\frac{7}{6} = \frac{42}{36}, \quad \text{so, }
\]
\[
\text{Sum} = \frac{42}{36} + \frac{35}{36} = \frac{77}{36}
\]
Final Answer: \( \frac{77}{36} \).