The inverse of a 3x3 matrix \( A \) is given by the formula:
\[
A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A)
\]
Step 1: Calculate the determinant of \( A \).
For the matrix
\[
A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix},
\]
the determinant is calculated as:
\[
\text{det}(A) = 0 \times \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} - 1 \times \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} + 2 \times \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix}
\]
\[
\text{det}(A) = 0 - 1 \times (-8) + 2 \times (-5) = 8 - 10 = -2
\]
Step 2: Calculate the adjoint of \( A \).
The adjoint of \( A \) is the transpose of the cofactor matrix. After calculating the cofactors, the adjoint \( \text{adj}(A) \) is:
\[
\text{adj}(A) = \begin{bmatrix} -1 & -1 & -1 \\ -8 & 6 & -1 \\ 5 & -3 & 1 \end{bmatrix}
\]
Step 3: Compute the inverse.
Now, using the formula for the inverse, we have:
\[
A^{-1} = \frac{1}{-2} \times \begin{bmatrix} -1 & -1 & -1 \\ -8 & 6 & -1 \\ 5 & -3 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 & -1 & -1 \\ -8 & 6 & -1 \\ 5 & -3 & 1 \end{bmatrix}
\]
Conclusion: The correct inverse matrix is:
\[
A^{-1} = \frac{1}{2} \begin{bmatrix} -1 & -1 & -1 \\ -8 & 6 & -1 \\ 5 & -3 & 1 \end{bmatrix}
\]