\( 0 \)
Step 1: Differentiate \( f(x) \)
We define: \[ f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}. \] Using quotient rule, \[ f'(x) = \frac{(2x - 1)(x^2 + x + 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2}. \] Expanding the numerator: \[ (2x - 1)(x^2 + x + 1) = 2x^3 + 2x^2 + 2x - x^2 - x - 1 = 2x^3 + x^2 + x - 1. \] \[ (x^2 - x + 1)(2x + 1) = 2x^3 + x^2 - 2x^2 - x + 2x + 1 = 2x^3 - x^2 + x + 1. \] Thus, \[ f'(x) = \frac{(2x^3 + x^2 + x - 1) - (2x^3 - x^2 + x + 1)}{(x^2 + x + 1)^2}. \] \[ = \frac{2x^3 + x^2 + x - 1 - 2x^3 + x^2 - x - 1}{(x^2 + x + 1)^2}. \] \[ = \frac{2x^2 - 2}{(x^2 + x + 1)^2}. \] Setting \( f'(x) = 0 \), \[ 2(x^2 - 1) = 0. \] \[ x^2 = 1 \Rightarrow x = \pm 1. \]
Step 2: Compute Maximum and Minimum Values
\[ f(1) = \frac{1^2 - 1 + 1}{1^2 + 1 + 1} = \frac{1}{3}. \] \[ f(-1) = \frac{(-1)^2 - (-1) + 1}{(-1)^2 + (-1) + 1} = \frac{3}{2}. \]
Step 3: Compute the sum
\[ \frac{1}{3} + \frac{3}{2} = \frac{2}{6} + \frac{9}{6} = \frac{10}{6} = \frac{10}{3}. \]
Step 4: Conclusion
Thus, the correct answer is: \[ \mathbf{\frac{10}{3}.} \]
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
On the basis of the given information, answer the followingIs \( f \) a bijective function?
Match the following: