\( 26 \)
Step 1: Find the Direction Ratios of the Line
The direction ratios of the line of intersection of two planes are given by:
\[ \mathbf{n_1} \times \mathbf{n_2} \]
where \( \mathbf{n_1} \) and \( \mathbf{n_2} \) are the normal vectors of the given planes.
For the first plane:
\[ x + 2y + 2z = 15 \Rightarrow \mathbf{n_1} = (1, 2, 2). \]
For the second plane:
\[ x - y + z = 4 \Rightarrow \mathbf{n_2} = (1, -1, 1). \]
Computing the Cross Product:
\[ \mathbf{n_1} \times \mathbf{n_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 2 \\ 1 & -1 & 1 \end{vmatrix} \]
Expanding along the first row:
\[ = \mathbf{i} \begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 1 & -1 \end{vmatrix}. \]
Evaluating the determinants:
\[ = \mathbf{i} (2 \times 1 - 2 \times (-1)) - \mathbf{j} (1 \times 1 - 2 \times 1) + \mathbf{k} (1 \times (-1) - 2 \times 1). \]
\[ = \mathbf{i} (2 + 2) - \mathbf{j} (1 - 2) + \mathbf{k} (-1 - 2). \]
\[ = 4\mathbf{i} + \mathbf{j} - 3\mathbf{k}. \]
Thus, the direction ratios are:
\[ (a, b, c) = (4, 1, -3). \]
Step 2: Compute \( \frac{a^2 + b^2 + c^2}{b^2} \)
\[ a^2 + b^2 + c^2 = 4^2 + 1^2 + (-3)^2. \]
\[ = 16 + 1 + 9 = 26. \]
\[ b^2 = 1^2 = 1. \]
\[ \frac{a^2 + b^2 + c^2}{b^2} = \frac{26}{1} = 26. \]
Step 3: Conclusion
Thus, the correct answer is:
\[ \mathbf{26}. \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?