\( 26 \)
Step 1: Find the Direction Ratios of the Line
The direction ratios of the line of intersection of two planes are given by:
\[ \mathbf{n_1} \times \mathbf{n_2} \]
where \( \mathbf{n_1} \) and \( \mathbf{n_2} \) are the normal vectors of the given planes.
For the first plane:
\[ x + 2y + 2z = 15 \Rightarrow \mathbf{n_1} = (1, 2, 2). \]
For the second plane:
\[ x - y + z = 4 \Rightarrow \mathbf{n_2} = (1, -1, 1). \]
Computing the Cross Product:
\[ \mathbf{n_1} \times \mathbf{n_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 2 \\ 1 & -1 & 1 \end{vmatrix} \]
Expanding along the first row:
\[ = \mathbf{i} \begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 1 & -1 \end{vmatrix}. \]
Evaluating the determinants:
\[ = \mathbf{i} (2 \times 1 - 2 \times (-1)) - \mathbf{j} (1 \times 1 - 2 \times 1) + \mathbf{k} (1 \times (-1) - 2 \times 1). \]
\[ = \mathbf{i} (2 + 2) - \mathbf{j} (1 - 2) + \mathbf{k} (-1 - 2). \]
\[ = 4\mathbf{i} + \mathbf{j} - 3\mathbf{k}. \]
Thus, the direction ratios are:
\[ (a, b, c) = (4, 1, -3). \]
Step 2: Compute \( \frac{a^2 + b^2 + c^2}{b^2} \)
\[ a^2 + b^2 + c^2 = 4^2 + 1^2 + (-3)^2. \]
\[ = 16 + 1 + 9 = 26. \]
\[ b^2 = 1^2 = 1. \]
\[ \frac{a^2 + b^2 + c^2}{b^2} = \frac{26}{1} = 26. \]
Step 3: Conclusion
Thus, the correct answer is:
\[ \mathbf{26}. \]