To find the perimeter of triangle \( ABC \), we first determine the lengths of the sides \( AB \), \( BC \), and \( CA \). The perimeter is the sum of these lengths. Step 1: Find the length of \( AB \) The vector \( AB \) is given by: \[ AB = 2i + 3j - 6k. \] The length of \( AB \) is: \[ |AB| = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7. \] Step 2: Find the length of \( BC \) The vector \( BC \) is given by: \[ BC = 6i - 2j + 3k. \] The length of \( BC \) is: \[ |BC| = \sqrt{6^2 + (-2)^2 + 3^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7. \] Step 3: Find the length of \( CA \) The vector \( CA \) is the negative of the sum of \( AB \) and \( BC \): \[ CA = -(AB + BC) = -[(2i + 3j - 6k) + (6i - 2j + 3k)] = -(8i + j - 3k) = -8i - j + 3k. \] The length of \( CA \) is: \[ |CA| = \sqrt{(-8)^2 + (-1)^2 + 3^2} = \sqrt{64 + 1 + 9} = \sqrt{74}. \] Step 4: Compute the perimeter The perimeter of triangle \( ABC \) is the sum of the lengths of its sides: \[ \text{Perimeter} = |AB| + |BC| + |CA| = 7 + 7 + \sqrt{74} = 14 + \sqrt{74}. \] Final Answer: \[ \boxed{\sqrt{74} + 14} \]
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
The percentage error in the measurement of mass and velocity are 3% and 4% respectively. The percentage error in the measurement of kinetic energy is: