Since \( f(x) \) is differentiable for all \( x \in \mathbb{R} \), it must be continuous for all \( x \in \mathbb{R} \). In particular, \( f(x) \) must be continuous at \( x = 1 \) and \( x = 2 \). For continuity at \( x = 1 \), we must have:
\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1). \]
This gives us:
\[ a(1)^2 + b(1) - \frac{13}{8} = 3(1) - 3 \] \[ a + b - \frac{13}{8} = 0 \] \[ a + b = \frac{13}{8} \]
For continuity at \( x = 2 \), we must have:
\[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2). \]
This gives us:
\[ 3(2) - 3 = b(2)^3 + 1 \] \[ 3 = 8b + 1 \] \[ 8b = 2 \] \[ b = \frac{1}{4} \]
Then,
\[ a = \frac{13}{8} - b = \frac{13}{8} - \frac{1}{4} = \frac{13}{8} - \frac{2}{8} = \frac{11}{8} \]
Thus,
\[ a - b = \frac{11}{8} - \frac{1}{4} = \frac{11}{8} - \frac{2}{8} = \frac{9}{8} \]
Since \( f(x) \) is differentiable for all \( x \in \mathbb{R} \), \( f'(x) \) must be continuous for all \( x \in \mathbb{R} \). We have:
\[ f'(x) = \begin{cases} 2ax + b, & x \leq 1 \\[8pt] 3, & 1 < x \leq 2 \\[8pt] 3bx^2, & x > 2 \end{cases} \]
For continuity of \( f'(x) \) at \( x = 1 \), we must have:
\[ 2a(1) + b = 3 \] \[ 2a + b = 3 \]
For continuity of \( f'(x) \) at \( x = 2 \), we must have:
\[ 3 = 3b(2)^2 \] \[ 3 = 12b \] \[ b = \frac{1}{4} \]
Then,
\[ 2a + \frac{1}{4} = 3 \] \[ 2a = \frac{11}{4} \] \[ a = \frac{11}{8} \]
Thus,
\[ a - b = \frac{11}{8} - \frac{1}{4} = \frac{11}{8} - \frac{2}{8} = \frac{9}{8} \]
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))