Step 1: Substitution
Let
\[
t = x^m + 1.
\]
Differentiating both sides,
\[
dt = m x^{m-1} dx.
\]
Rewriting the given integral:
\[
I = \int \frac{1}{x^m \sqrt[m]{t}} dx.
\]
Since \( \sqrt[m]{t} = t^{1/m} \), rewriting:
\[
I = \int \frac{1}{x^m t^{1/m}} dx.
\]
Using \( t = x^m + 1 \), differentiating:
\[
dt = m x^{m-1} dx \Rightarrow dx = \frac{dt}{m x^{m-1}}.
\]
Substituting into the integral:
\[
I = \int \frac{dt}{m x^{m-1} x^m t^{1/m}}.
\]
\[
= \int \frac{dt}{m x^{2m-1} t^{1/m}}.
\]
Using \( x^m = t - 1 \),
\[
I = \int \frac{dt}{m (t - 1)^{2-1/m} t^{1/m}}.
\]
Step 2: Solving the Integral
Rewriting in powers:
\[
I = \int (t - 1)^{- (m-1)/m} t^{-1/m} dt.
\]
Using the standard integral formula:
\[
\int u^a v^b du = \frac{u^{a+1} v^{b+1}}{a+1},
\]
\[
I = \frac{-1}{m-1} \left( \frac{\sqrt[m]{x^m + 1}}{x} \right)^{m-1} + C.
\]
Step 3: Conclusion
Thus, the correct answer is:
\[
\mathbf{\frac{-1}{m-1} \left( \frac{\sqrt[m]{x^m + 1}}{x} \right)^{m-1} + C}.
\]
\bigskip