We are given the data set: 7, 8, 9, 7, 8, 7, \(\lambda\), 8, and the mean of the data is 8. We need to find the variance of the data.
Step 1: Calculate the value of \( \lambda \) The mean of a data set is given by the formula: \[ \text{Mean} = \frac{\sum \text{data values}}{n} \] Where \(n\) is the number of data points. For this data set, we have 8 data points, and the mean is given as 8. Thus, \[ \frac{7 + 8 + 9 + 7 + 8 + 7 + \lambda + 8}{8} = 8 \] \[ \frac{54 + \lambda}{8} = 8 \] Multiplying both sides by 8: \[ 54 + \lambda = 64 \] \[ \lambda = 64 - 54 = 10 \] So, \( \lambda = 10 \).
Step 2: Calculate the variance The variance is given by the formula: \[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{n} \] Where \( x_i \) is each data point and \( \mu \) is the mean (which is 8). Substituting the values: \[ \text{Variance} = \frac{(7-8)^2 + (8-8)^2 + (9-8)^2 + (7-8)^2 + (8-8)^2 + (7-8)^2 + (10-8)^2 + (8-8)^2}{8} \] \[ \text{Variance} = \frac{(-1)^2 + (0)^2 + (1)^2 + (-1)^2 + (0)^2 + (-1)^2 + (2)^2 + (0)^2}{8} \] \[ \text{Variance} = \frac{1 + 0 + 1 + 1 + 0 + 1 + 4 + 0}{8} \] \[ \text{Variance} = \frac{8}{8} = 1 \] Thus, the variance of the data is 1.
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]