The foot of the perpendicular drawn from \( A(1,2,2) \) onto the plane \[ x + 2y + 2z - 5 = 0 \] is \( B(a, \beta, \gamma) \). If \( \pi(x,y,z) = x + 2y + 2z + 5 = 0 \) is a plane then \(-\pi(A):\pi(B) \) is:
\( -27:20 \)
Step 1: Equation of the Foot of the Perpendicular
Given the point \( A(1,2,2) \) and the plane equation: \[ x + 2y + 2z - 5 = 0. \] The equation of the line perpendicular to the plane passing through \( A(1,2,2) \) is: \[ x = 1 + \lambda, \quad y = 2 + 2\lambda, \quad z = 2 + 2\lambda. \] Substituting these into the plane equation: \[ (1 + \lambda) + 2(2 + 2\lambda) + 2(2 + 2\lambda) - 5 = 0. \] Expanding: \[ 1 + \lambda + 4 + 4\lambda + 4 + 4\lambda - 5 = 0. \] \[ \lambda + 4\lambda + 4\lambda + (1 + 4 + 4 - 5) = 0. \] \[ 9\lambda + 4 = 0. \] \[ \lambda = -\frac{4}{9}. \]
Step 2: Finding the Foot of the Perpendicular
Substituting \( \lambda = -\frac{4}{9} \) into parametric equations: \[ x = 1 - \frac{4}{9} = \frac{9}{9} - \frac{4}{9} = \frac{5}{9}. \] \[ y = 2 + 2\left(-\frac{4}{9}\right) = 2 - \frac{8}{9} = \frac{18}{9} - \frac{8}{9} = \frac{10}{9}. \] \[ z = 2 + 2\left(-\frac{4}{9}\right) = 2 - \frac{8}{9} = \frac{18}{9} - \frac{8}{9} = \frac{10}{9}. \] Thus, the foot of the perpendicular is: \[ B\left(\frac{5}{9}, \frac{10}{9}, \frac{10}{9}\right). \]
Step 3: Ratio Calculation
Using the given equation \( \pi(x,y,z) = x + 2y + 2z + 5 = 0 \), \[ \pi(A) = 1 + 2(2) + 2(2) - 5 = 1 + 4 + 4 - 5 = 4. \] \[ \pi(B) = \frac{5}{9} + 2\left(\frac{10}{9}\right) + 2\left(\frac{10}{9}\right) - 5. \] \[ = \frac{5}{9} + \frac{20}{9} + \frac{20}{9} - 5. \] \[ = \frac{5 + 20 + 20}{9} - 5 = \frac{45}{9} - 5 = 5 - 5 = 0. \] Thus, the ratio is: \[ \boxed{-7:5}. \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon