Step 1: Define the Binomial Probability Formula
For a binomial distribution \( X \sim B(n, p) \), the probability mass function is given by:
\[
P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]
Given \( X \sim B(6, p) \), we apply this formula to compute \( P(X=4) \) and \( P(X=2) \).
Step 2: Compute Probability Ratios
Using the binomial formula:
\[
P(X=4) = \binom{6}{4} p^4 (1 - p)^2
\]
\[
P(X=2) = \binom{6}{2} p^2 (1 - p)^4
\]
Taking their ratio:
\[
\frac{P(X=4)}{P(X=2)} = \frac{\binom{6}{4} p^4 (1 - p)^2}{\binom{6}{2} p^2 (1 - p)^4}
\]
Substituting \( \binom{6}{4} = \binom{6}{2} = 15 \):
\[
\frac{15 p^4 (1 - p)^2}{15 p^2 (1 - p)^4}
\]
\[
= \frac{p^4}{p^2} \times \frac{(1 - p)^2}{(1 - p)^4}
\]
\[
= p^2 \times \frac{1}{(1 - p)^2}
\]
Since we are given:
\[
\frac{P(X=4)}{P(X=2)} = \frac{1}{9}
\]
we equate:
\[
p^2 \times \frac{1}{(1 - p)^2} = \frac{1}{9}
\]
Step 3: Solve for \( p \)
Taking the square root on both sides:
\[
\frac{p}{1 - p} = \frac{1}{3}
\]
\[
3p = 1 - p
\]
\[
4p = 1
\]
\[
p = \frac{1}{4}
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\mathbf{\frac{1}{4}}
\]
\bigskip