\[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x \] \[ = 1 - 2 \sin^2 x \cos^2 x \] \[ = 1 - \frac{1}{2} (2 \sin x \cos x)^2 \] \[ = 1 - \frac{1}{2} \sin^2 (2x) \] \[ = 1 - \frac{1}{2} \cdot \frac{1 - \cos (4x)}{2} \] \[ = 1 - \frac{1}{4} (1 - \cos (4x)) \] \[ = \frac{3}{4} + \frac{1}{4} \cos (4x) \]
\[ \int_0^{2\pi} (\sin^4 x + \cos^4 x) \, dx = \int_0^{2\pi} \left( \frac{3}{4} + \frac{1}{4} \cos (4x) \right) \, dx \] \[ = \left[ \frac{3}{4} x + \frac{1}{16} \sin (4x) \right]_0^{2\pi} \] \[ = \frac{3}{4}(2\pi) + \frac{1}{16} \sin (8\pi) - \left( \frac{3}{4}(0) + \frac{1}{16} \sin (0) \right) \] \[ = \frac{3\pi}{2} \]
\[ \int_0^\pi \sin^2 x \, dx = \int_0^\pi \frac{1 - \cos (2x)}{2} \, dx \] \[ = \left[ \frac{x}{2} - \frac{\sin (2x)}{4} \right]_0^\pi \] \[ = \frac{\pi}{2} - \frac{\sin (2\pi)}{4} - \left( \frac{0}{2} - \frac{\sin (0)}{4} \right) \] \[ = \frac{\pi}{2} \]
\[ \int_0^{\pi/2} \cos^2 x \, dx = \int_0^{\pi/2} \frac{1 + \cos (2x)}{2} \, dx \] \[ = \left[ \frac{x}{2} + \frac{\sin (2x)}{4} \right]_0^{\pi/2} \] \[ = \frac{\pi}{4} + \frac{\sin \pi}{4} - \left( \frac{0}{2} + \frac{\sin 0}{4} \right) \] \[ = \frac{\pi}{4} \]
\[ \frac{3\pi}{2} = K \cdot \frac{\pi}{2} + L \cdot \frac{\pi}{4} \] Dividing by \( \frac{\pi}{4} \): \[ 6 = 2K + L \] Possible solutions:
Thus, there are 2 possible ordered pairs \( (K, L) \).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?