Let \( x = e^t \), so \( t = \log x \). Then,
\[ dx = e^t \, dt \]
Substituting into the integral, we get:
\[ \int (\log x)^m x^n \, dx = \int t^m (e^t)^n e^t \, dt \] \[ = \int t^m e^{nt} e^t \, dt \] \[ = \int t^m e^{(n+1)t} \, dt \]
Therefore, the correct answer is:
\[ \int t^m e^{(n+1)t} \, dt, \quad x = e^t. \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: