Let \( x = e^t \), so \( t = \log x \). Then,
\[ dx = e^t \, dt \]
Substituting into the integral, we get:
\[ \int (\log x)^m x^n \, dx = \int t^m (e^t)^n e^t \, dt \] \[ = \int t^m e^{nt} e^t \, dt \] \[ = \int t^m e^{(n+1)t} \, dt \]
Therefore, the correct answer is:
\[ \int t^m e^{(n+1)t} \, dt, \quad x = e^t. \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))