Let \( x = e^t \), so \( t = \log x \). Then,
\[ dx = e^t \, dt \]
Substituting into the integral, we get:
\[ \int (\log x)^m x^n \, dx = \int t^m (e^t)^n e^t \, dt \] \[ = \int t^m e^{nt} e^t \, dt \] \[ = \int t^m e^{(n+1)t} \, dt \]
Therefore, the correct answer is:
\[ \int t^m e^{(n+1)t} \, dt, \quad x = e^t. \]