Question:

Evaluate the integral: sin1(xax)dx \int \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right) dx

Show Hint

For inverse trigonometric integrals, use suitable trigonometric identities and substitutions to simplify expressions.
Updated On: Mar 13, 2025
  • xcos1(ax)axa2+C x \cos^{-1} \left(\sqrt{\frac{a}{x}}\right) - \sqrt{ax - a^2} + C
  • xsec1(ax)+x2ax+C x \sec^{-1} \left(\sqrt{\frac{a}{x}}\right) + \sqrt{x^2 - ax} + C
  • xsin1(xa)+x2+ax+C x \sin^{-1} \left(\sqrt{\frac{x}{a}}\right) + \sqrt{x^2 + ax} + C
  • xasin1(xa)+x2a1+a2+C \frac{x}{a} \sin^{-1} \left(\frac{x}{a}\right) + \frac{x^2}{a} \sqrt{1 + a^2} + C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use the substitution Let t=sin1(xax). t = \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right). Then, sint=xax. \sin t = \sqrt{\frac{x - a}{x}}. Squaring both sides, sin2t=xax. \sin^2 t = \frac{x - a}{x}. Thus, xsin2t=xa. x \sin^2 t = x - a. Step 2: Differentiate both sides Using implicit differentiation, 2xsintcostdtdx+sin2t=1. 2x \sin t \cos t \frac{dt}{dx} + \sin^2 t = 1. Rearranging, dtdx=1sin2t2xsintcost. \frac{dt}{dx} = \frac{1 - \sin^2 t}{2x \sin t \cos t}. Using trigonometric identities, solve the integral, leading to: xcos1(ax)axa2+C. x \cos^{-1} \left(\sqrt{\frac{a}{x}}\right) - \sqrt{ax - a^2} + C.

Was this answer helpful?
0
0

Top Questions on Integration

View More Questions