Question:

Evaluate the integral: \[ \int \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right) dx \]

Show Hint

For inverse trigonometric integrals, use suitable trigonometric identities and substitutions to simplify expressions.
Updated On: Mar 13, 2025
  • \( x \cos^{-1} \left(\sqrt{\frac{a}{x}}\right) - \sqrt{ax - a^2} + C \)
  • \( x \sec^{-1} \left(\sqrt{\frac{a}{x}}\right) + \sqrt{x^2 - ax} + C \)
  • \( x \sin^{-1} \left(\sqrt{\frac{x}{a}}\right) + \sqrt{x^2 + ax} + C \)
  • \( \frac{x}{a} \sin^{-1} \left(\frac{x}{a}\right) + \frac{x^2}{a} \sqrt{1 + a^2} + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use the substitution Let \[ t = \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right). \] Then, \[ \sin t = \sqrt{\frac{x - a}{x}}. \] Squaring both sides, \[ \sin^2 t = \frac{x - a}{x}. \] Thus, \[ x \sin^2 t = x - a. \] Step 2: Differentiate both sides Using implicit differentiation, \[ 2x \sin t \cos t \frac{dt}{dx} + \sin^2 t = 1. \] Rearranging, \[ \frac{dt}{dx} = \frac{1 - \sin^2 t}{2x \sin t \cos t}. \] Using trigonometric identities, solve the integral, leading to: \[ x \cos^{-1} \left(\sqrt{\frac{a}{x}}\right) - \sqrt{ax - a^2} + C. \]

Was this answer helpful?
0
0