Step 1: Use the substitution Let \[ t = \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right). \] Then, \[ \sin t = \sqrt{\frac{x - a}{x}}. \] Squaring both sides, \[ \sin^2 t = \frac{x - a}{x}. \] Thus, \[ x \sin^2 t = x - a. \] Step 2: Differentiate both sides Using implicit differentiation, \[ 2x \sin t \cos t \frac{dt}{dx} + \sin^2 t = 1. \] Rearranging, \[ \frac{dt}{dx} = \frac{1 - \sin^2 t}{2x \sin t \cos t}. \] Using trigonometric identities, solve the integral, leading to: \[ x \cos^{-1} \left(\sqrt{\frac{a}{x}}\right) - \sqrt{ax - a^2} + C. \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))