>
Mathematics
List of top Mathematics Questions
Given \(f(x) = x^2 - 5x + 4\). Out of first 20 natural numbers, if a number \(x\) is chosen at random, then the probability that the chosen \(x\) satisfies the inequality \(f(x)>10\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Probability
If the variance of the first \(n\) natural numbers is 10 and the variance of the first \(m\) even natural numbers is 16, then \(n : m =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Statistics
In a triangle ABC, if \(r_1 = 3, r_2 = 4, r_3 = 6\), then \(b =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors and \(\vec{a} \perp \vec{b}\), and \((\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0\), and \(\vec{c} = l\vec{a} + m\vec{b} + n(\vec{a} \times \vec{b})\), then \(n^2 =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
If the points A, B, C, D with position vectors \(\vec{i} + \vec{j} - \vec{k}, -\vec{i} + 2\vec{k}, \vec{i} - 2\vec{j} + \vec{k}, 2\vec{i} + \vec{j} + \vec{k}\) form a tetrahedron, then angle between faces ABC and ABD is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
The point of intersection of the lines represented by \(\vec{r} = (\hat{i} - 6\hat{j} + 2\hat{k}) + t(\hat{i} + 2\hat{j} + \hat{k})\) and \(\vec{r} = (4\hat{j} + \hat{k}) + s(2\hat{i} + \hat{j} + 2\hat{k})\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
Let the position vectors of the vertices of triangle ABC be \(\vec{a}, \vec{b}, \vec{c}\). If a point \(P\) on the plane of triangle has a position vector \(\vec{r}\) such that \(\vec{r} - \vec{b} = \vec{a} - \vec{c}\) and \(\vec{r} - \vec{c} = \vec{a} - \vec{b}\), then \(P\) is the
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
In \(\triangle ABC\), if \(a + c = 5b\), then \(\cot\dfrac{A}{2} \cdot \cot\dfrac{C}{2} =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
Evaluate the expression:
\[ \cos^3 \left( \frac{3\pi}{8} \right) \cos \left( \frac{3\pi}{8} \right) + \sin^3 \left( \frac{3\pi}{8} \right) \sin \left( \frac{3\pi}{8} \right) \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If \(A + B + C = \dfrac{\pi}{4}\), then \(\sin 4A + \sin 4B + \sin 4C =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If \( A + B + C = \frac{\pi}{4} \), then evaluate the expression:
\[ \sin 4A + \sin 4B + \sin 4C \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
In a triangle ABC, if \(\sin\frac{A}{2} = \dfrac{1}{4}\sqrt{\dfrac{5}{\sqrt{5}}}, a = 2, c = 5\), and \(b\) is an integer, then the area (in sq. units) of triangle ABC is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If the polynomial \( f(x) = x^4 + ax^3 + bx^2 + cx + d \) is divided by \( x - 1 \) and \( x + 1 \), the remainders are 5 and 3 respectively. If \( f(x) \) is divided by \( x^2 - 1 \), then the remainder is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If $P_n$ denotes the product of the binomial coefficients in the expansion of $(1 + x)^n$, then find \[ \frac{P_{n+1}}{P_n}. \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
Coefficient of $x^2$ in the expansion of $(x^2 + x - 2)^5$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
If \[ \binom{p}{q} = \binom{p}{q} \quad \text{and} \quad \sum_{i=0}^m \binom{10}{i} \binom{20}{m-i} \text{ is maximum, then find } m. \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
The number of ways of distributing 3 dozen fruits (no two fruits are identical) to 9 persons such that each gets the same number of fruits is
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial Expansion
If \( ax^2 + bx + e>0 \) for all \( x \in \mathbb{R} \) and the expressions \( cx^2 + ax + b \) and \( ax^2 + bx + c \) have their extreme values at the same point \( x \), then for the expression \( cx^2 + ax + b \), find the correct statement regarding its extreme value.
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If \( x^2 - 5x + 6 \) is a factor of \( f(x) = x^4 - 17x^3 + kx^2 - 247x + 210 \), find the other quadratic factor of \( f(x) \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If $a = \ln \left( \frac{1}{z^2} \right)$ and $z$ is any non-zero complex number such that $|z| = 1$, then which of the following is the correct expression for $a$?
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If \( a \pm bi \) and \( b \pm ai \) are roots of \( x^4 - 10x^3 + 50x^2 - 130x + 169 = 0 \), then find the value of \( \frac{a}{b} + \frac{b}{a} \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
The roots $\alpha, \beta$ of the equation \[ x^2 - 6(k-1)x + 4(k-2) = 0 \] are equal in magnitude but opposite in sign. If $\alpha>\beta$, then the product of the roots of the equation \[ 2x^2 - \alpha x + 6\beta (\alpha + 1) = 0 \] is
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
In solving a system of linear equations \(AX = B\) by Cramer's rule, in the usual notation, if
\[ \Delta_1 = \begin{vmatrix} -11 & 1 & -7\\ -4 & 1 & -2 \\ 5 & 1 & 1 \end{vmatrix} \quad \text{and} \quad \Delta_3 = \begin{vmatrix} 4 & 1 & -11 \\ 3 & 1 & -4 \\ 4 & 1 & 5 \end{vmatrix}, \quad \text{then } X = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If $2.5 + 5.9 + 8.13 + 11.17 + \ldots$ to $n$ terms = $an^3 + bn^2 + cn + d$, then find $a - b - c - d$
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
The general solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = \frac{y}{x} e^x$ is
Identify the correct option from the following:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Prev
1
...
159
160
161
162
163
...
1123
Next