We are given: \[ \int \frac{\log(1 + x^4)}{x^3} \, dx = f(x) \log\left(\frac{1}{g(x)}\right) + \tan^{-1}(h(x)) + C \] We need to find the expression for: \[ h(x) [f(x) + f\left(\frac{1}{x}\right)] \]
Step 1: Differentiating the Integral
Let \[ I = \int \frac{\log(1 + x^4)}{x^3} \, dx \] Differentiating both sides, \[ \frac{dI}{dx} = \frac{\log(1 + x^4)}{x^3} \] Now let \( u = 1 + x^4 \implies du = 4x^3 dx \) \[ \frac{1}{x^3} = \frac{4}{u} \] Thus, \[ I = \frac{1}{4} \int \frac{\log u}{u} \, du \]
Step 2: Integration
Using the identity, \[ \int \frac{\log u}{u} \, du = \frac{(\log u)^2}{2} \] Thus, \[ I = \frac{1}{4} \cdot \frac{(\log(1 + x^4))^2}{2} = \frac{(\log(1 + x^4))^2}{8} \]
Step 3: Identifying \(f(x)\), \(g(x)\), and \(h(x)\)
From the given format, - \( f(x) = \frac{1}{8} \) - \( g(x) = 1 + x^4 \) - \( h(x) = x^2 \)
Step 4: Computing \(h(x) [f(x) + f(\frac{1}{x})] \)
Since \( f(x) = \frac{1}{8} \), and \( f\left(\frac{1}{x}\right) = \frac{1}{8} \), \[ h(x) [f(x) + f\left(\frac{1}{x}\right)] = x^2 \left( \frac{1}{8} + \frac{1}{8} \right) \] \[ = x^2 \cdot \frac{2}{8} = \frac{x^2}{4} \] Since \( g(x) = 1 + x^4 \), this simplifies to: \[ \frac{g(x)}{2} \]
Final Answer: (B) \( \frac{g(x)}{2} \)
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: