If
and \( AA^T = I \), then \( \frac{a}{b} + \frac{b}{a} = \):
Suppose \( \theta_1 \) and \( \theta_2 \) are such that \( (\theta_1 - \theta_2) \) lies in the 3rd or 4th quadrant. If \[ \sin\theta_1 + \sin\theta_2 = \frac{21}{65} \quad \text{and} \quad \cos\theta_1 + \cos\theta_2 = \frac{27}{65} \] then \[ \cos\left(\frac{\theta_1 - \theta_2}{2}\right) = \]
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is: