We are given the points:
\[
A(1, 2, 0), \quad B(2, 0, 1), \quad C(-3, 0, 2)
\]
We need to calculate the length of the internal bisector of \( \angle BAC \).
Step 1: Compute Side Lengths of the Triangle
Using the distance formula,
\[
AB = \sqrt{(2 - 1)^2 + (0 - 2)^2 + (1 - 0)^2}
= \sqrt{1^2 + (-2)^2 + 1^2}
= \sqrt{1 + 4 + 1} = \sqrt{6}
\]
\[
AC = \sqrt{(-3 - 1)^2 + (0 - 2)^2 + (2 - 0)^2}
= \sqrt{(-4)^2 + (-2)^2 + 2^2}
= \sqrt{16 + 4 + 4} = \sqrt{24} = 2\sqrt{6}
\]
\[
BC = \sqrt{(-3 - 2)^2 + (0 - 0)^2 + (2 - 1)^2}
= \sqrt{(-5)^2 + 0^2 + 1^2}
= \sqrt{25 + 1} = \sqrt{26}
\]
Step 2: Apply the Internal Bisector Length Formula
The length of the internal bisector of \( \angle BAC \) is given by:
\[
l = \frac{2bc \cos \frac{A}{2}}{b + c}
\]
Equivalently,
\[
l = \frac{2\sqrt{AB \cdot AC \left[ (AB + AC)^2 - BC^2 \right]}}{AB + AC}
\]
Substituting the known values:
\[
l = \frac{2\sqrt{\sqrt{6} \cdot 2\sqrt{6} \left[ (\sqrt{6} + 2\sqrt{6})^2 - (\sqrt{26})^2 \right]}}{\sqrt{6} + 2\sqrt{6}}
\]
\[
= \frac{2\sqrt{6 \times 12 \left[ (3\sqrt{6})^2 - 26 \right]}}{3\sqrt{6}}
\]
Now calculate each term:
\[
(3\sqrt{6})^2 = 9 \times 6 = 54
\]
\[
54 - 26 = 28
\]
\[
l = \frac{2\sqrt{72 \times 28}}{3\sqrt{6}}
\]
\[
72 \times 28 = 2016
\]
\[
\sqrt{2016} = 2\sqrt{14} \times 6
\]
Now,
\[
l = \frac{2 \times 6 \times 2\sqrt{14}}{3\sqrt{6}}
= \frac{24 \sqrt{14}}{3\sqrt{6}}
= \frac{8 \sqrt{14}}{\sqrt{6}}
\]
Rationalizing,
\[
l = \frac{8 \sqrt{14} \times \sqrt{6}}{6} = \frac{8 \sqrt{84}}{6} = \frac{8 \times 2\sqrt{21}}{6} = \frac{16\sqrt{21}}{6} = \frac{8\sqrt{21}}{3}
\]
Since \( \sqrt{21} = \sqrt{14} \times \sqrt{1.5} = \frac{2\sqrt{14}}{3} \),
\[
l = \frac{2\sqrt{14}}{3}
\]
Step 3: Final Answer
\[
\boxed{\frac{2\sqrt{14}}{3}}
\]
Final Answer: (B) \( \frac{2\sqrt{14}}{3} \)