Step 1: Identify the center and radius of the circle
The given equation of the circle is: \[ x^2 + y^2 = 25. \] This represents a circle centered at \( (0,0) \) with radius \( 5 \).
Step 2: Finding slopes of \( OQ \) and \( OR \)
The points \( Q(3,4) \) and \( R(-4,3) \) lie on the circle. The slopes of the lines joining them to the origin (center of the circle) are: \[ \text{Slope of } OQ = \frac{4 - 0}{3 - 0} = \frac{4}{3}, \] \[ \text{Slope of } OR = \frac{3 - 0}{-4 - 0} = -\frac{3}{4}. \]
Step 3: Find angle between \( OQ \) and \( OR \)
Using the angle formula between two lines: \[ \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|, \] where \( m_1 = \frac{4}{3} \) and \( m_2 = -\frac{3}{4} \), \[ \tan \theta = \left| \frac{\frac{4}{3} + \frac{3}{4}}{1 - \left( \frac{4}{3} \times \frac{3}{4} \right)} \right|. \]
Step 4: Compute value
\[ \tan \theta = \left| \frac{\frac{16}{12} + \frac{9}{12}}{1 - \frac{12}{12}} \right| = \left| \frac{\frac{25}{12}}{0} \right|. \] \[ \theta = \frac{\pi}{4}. \]
Step 5: Conclusion
Thus, the final answer is: \[ \boxed{\frac{\pi}{4}}. \]
Given $\triangle ABC \sim \triangle PQR$, $\angle A = 30^\circ$ and $\angle Q = 90^\circ$. The value of $(\angle R + \angle B)$ is
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))