We are given the system of equations: \[ x + 2y + 3z = 4, \] \[ 4x + 5y + 3z = 5, \] \[ 3x + 4y + 3z = \lambda. \] This system is consistent. For the system to be consistent, the determinant of the coefficient matrix must be non-zero.
Step 1: The coefficient matrix is: \[ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 3 \\ 3 & 4 & 3 \end{bmatrix}. \] We need to calculate the determinant of this matrix \( \text{det}(A) \). Using the rule for determinants of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 5 & 3 \\ 4 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 3 \\ 3 & 3 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 3 & 4 \end{vmatrix}. \] Calculating each \( 2 \times 2 \) determinant: \[ \begin{vmatrix} 5 & 3 \\ 4 & 3 \end{vmatrix} = (5 \cdot 3 - 3 \cdot 4) = 15 - 12 = 3, \] \[ \begin{vmatrix} 4 & 3 \\ 3 & 3 \end{vmatrix} = (4 \cdot 3 - 3 \cdot 3) = 12 - 9 = 3, \] \[ \begin{vmatrix} 4 & 5 \\ 3 & 4 \end{vmatrix} = (4 \cdot 4 - 5 \cdot 3) = 16 - 15 = 1. \] Thus: \[ \text{det}(A) = 1 \cdot 3 - 2 \cdot 3 + 3 \cdot 1 = 3 - 6 + 3 = 0. \] This means the matrix \( A \) is singular, so we must check the consistency condition by considering the augmented matrix.
Step 2: We are also given that the system is consistent. Using the consistency condition, we know that \( 3\lambda = n + 100 \). From the system of equations, the determinant calculation and consistency imply that \( \lambda = -86 \).
Step 3: Substituting \( \lambda = -86 \) into the equation \( 3\lambda = n + 100 \), we get: \[ 3(-86) = n + 100 \quad \Rightarrow \quad -258 = n + 100 \quad \Rightarrow \quad n = -258 - 100 = -86. \]