We are asked to find the imaginary part of the expression:
\[
\frac{(1 - i)^3}{(2 - i)(3 - 2i)}.
\]
Step 1: Expanding \( (1 - i)^3 \)
We start by expanding \( (1 - i)^3 \). Use the binomial expansion for \( (a - b)^3 \):
\[
(1 - i)^3 = 1^3 - 3(1^2)(i) + 3(1)(i^2) - i^3.
\]
Now calculate the terms:
\[
1^3 = 1, \quad 3(1^2)(i) = 3i, \quad 3(1)(i^2) = 3(-1) = -3, \quad -i^3 = -(-i) = i.
\]
Thus:
\[
(1 - i)^3 = 1 - 3i - 3 + i = -2 - 2i.
\]
Step 2: Expanding \( (2 - i)(3 - 2i) \)
Next, we expand \( (2 - i)(3 - 2i) \) using distributive property:
\[
(2 - i)(3 - 2i) = 2(3) + 2(-2i) - i(3) - i(-2i).
\]
Now calculate the terms:
\[
2(3) = 6, \quad 2(-2i) = -4i, \quad -i(3) = -3i, \quad -i(-2i) = 2i^2 = -2.
\]
Thus:
\[
(2 - i)(3 - 2i) = 6 - 4i - 3i - 2 = 4 - 7i.
\]
Step 3: Dividing the two expressions
Now, we divide the two expressions:
\[
\frac{-2 - 2i}{4 - 7i}.
\]
To simplify this, multiply both the numerator and denominator by the conjugate of the denominator \( 4 + 7i \):
\[
\frac{-2 - 2i}{4 - 7i} \times \frac{4 + 7i}{4 + 7i} = \frac{(-2 - 2i)(4 + 7i)}{(4 - 7i)(4 + 7i)}.
\]
First, simplify the denominator:
\[
(4 - 7i)(4 + 7i) = 4^2 - (7i)^2 = 16 - (-49) = 16 + 49 = 65.
\]
Now, expand the numerator:
\[
(-2 - 2i)(4 + 7i) = -2(4) - 2(7i) - 2i(4) - 2i(7i) = -8 - 14i - 8i + 14 = 6 - 22i.
\]
Thus, the expression becomes:
\[
\frac{6 - 22i}{65}.
\]
Step 4: Identifying the imaginary part
The expression is \( \frac{6}{65} - \frac{22i}{65} \), so the imaginary part is:
\[
-\frac{22}{65}.
\]
Thus, the imaginary part of \( \frac{(1 - i)^3}{(2 - i)(3 - 2i)} \) is \( -\frac{22}{65} \).