Consider the following subsets of the Euclidean space \( \mathbb{R}^4 \):
\( S = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 - x_4^2 = 0 \} \),
\( T = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 - x_4^2 = 1 \} \),
\( U = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 - x_4^2 = -1 \} \).
Then, which one of the following is TRUE?