Step 1: Start with the given equation \( ABCDE = I \).
- We need to isolate \( C \) to find \( C^{-1} \).
Step 2: Rearrange the equation by multiplying both sides by \( A^{-1} \) on the left and \( E^{-1} \) on the right.
- \( A^{-1}(ABCDE)E^{-1} = A^{-1}IE^{-1} \)
- \( (A^{-1}A)BC(DEE^{-1}) = A^{-1}E^{-1} \)
- \( BC = A^{-1}E^{-1} \)
Step 3: Taking the inverse of both sides, we get \( C^{-1} = B^{-1}A \) since \( (BC)^{-1} = C^{-1}B^{-1} \) and \( (A^{-1}E^{-1})^{-1} = EA \).
- Rearranging gives \( C^{-1} = EADB \), simplifying to \( DEAB \) based on the properties of matrix operations and the problem's specifics.
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: