We want to find the coefficient of \(x\) in the expansion of
\[ \frac{(1 - 4x)^2 (1 - 2x^2)^{1/2}}{(4 - x)^{3/2}}. \]
We can write
\[ \frac{(1 - 4x)^2 (1 - 2x^2)^{1/2}}{(4 - x)^{3/2}} = (1 - 4x)^2 (1 - 2x^2)^{1/2} \cdot 4^{-3/2} \left( 1 - \frac{x}{4} \right)^{-3/2} \] \[ = \frac{1}{8} (1 - 8x + 16x^2) (1 - x^2 + \ldots) \left( 1 + \frac{3}{8} x + \ldots \right). \]
We are only interested in the coefficient of \(x\), so we can ignore terms of degree 2 or higher. Then
\[ \frac{(1 - 4x)^2 (1 - 2x^2)^{1/2}}{(4 - x)^{3/2}} = \frac{1}{8} (1 - 8x) \left( 1 + \frac{3}{8} x \right) + O(x^2) \] \[ = \frac{1}{8} \left( 1 - 8x + \frac{3}{8} x - 3x^2 \right) + O(x^2) \] \[ = \frac{1}{8} \left( 1 - \frac{61}{8} x \right) + O(x^2) \] \[ = \frac{1}{8} - \frac{61}{64} x + O(x^2). \]
Therefore, the coefficient of \(x\) is \(-\frac{61}{64}\).
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______