We want to find the coefficient of \(x\) in the expansion of
\[ \frac{(1 - 4x)^2 (1 - 2x^2)^{1/2}}{(4 - x)^{3/2}}. \]
We can write
\[ \frac{(1 - 4x)^2 (1 - 2x^2)^{1/2}}{(4 - x)^{3/2}} = (1 - 4x)^2 (1 - 2x^2)^{1/2} \cdot 4^{-3/2} \left( 1 - \frac{x}{4} \right)^{-3/2} \] \[ = \frac{1}{8} (1 - 8x + 16x^2) (1 - x^2 + \ldots) \left( 1 + \frac{3}{8} x + \ldots \right). \]
We are only interested in the coefficient of \(x\), so we can ignore terms of degree 2 or higher. Then
\[ \frac{(1 - 4x)^2 (1 - 2x^2)^{1/2}}{(4 - x)^{3/2}} = \frac{1}{8} (1 - 8x) \left( 1 + \frac{3}{8} x \right) + O(x^2) \] \[ = \frac{1}{8} \left( 1 - 8x + \frac{3}{8} x - 3x^2 \right) + O(x^2) \] \[ = \frac{1}{8} \left( 1 - \frac{61}{8} x \right) + O(x^2) \] \[ = \frac{1}{8} - \frac{61}{64} x + O(x^2). \]
Therefore, the coefficient of \(x\) is \(-\frac{61}{64}\).
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))