Problem:
Find the range of the real-valued function
\[
f(x) = \sin^{-1} \left( \frac{1 + x^2}{2x} \right) + \cos^{-1} \left( \frac{2x}{1 + x^2} \right).
\]
Step 1: Analyze the arguments of inverse functions
Notice the expressions inside the inverse sine and cosine functions:
\[
\frac{1 + x^2}{2x} \quad \text{and} \quad \frac{2x}{1 + x^2}.
\]
Observe that these two expressions are reciprocals of each other:
\[
\frac{1 + x^2}{2x} = \frac{1}{\frac{2x}{1 + x^2}}.
\]
Step 2: Use the identity relating \(\sin^{-1}\) and \(\cos^{-1}\)
Recall that for \( y \in [-1,1] \):
\[
\sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}.
\]
In this problem, the arguments are reciprocals, so check their relationship:
\[
\sin^{-1} \left( \frac{1 + x^2}{2x} \right) + \cos^{-1} \left( \frac{2x}{1 + x^2} \right).
\]
If
\[
\sin^{-1}(z) + \cos^{-1}\left( \frac{1}{z} \right) = \frac{\pi}{2}
\]
for all valid \( z \), then \( f(x) = \frac{\pi}{2} \).
Step 3: Confirm the function is constant
For all \( x \) in the domain (where the arguments are defined and in the correct ranges), the sum remains constant.
Final answer:
\[
\boxed{\left\{ \frac{\pi}{2} \right\}}.
\]