We are given the function
\[
f(x) = \sin^{-1} \left( \frac{1 + x^2}{2x} \right) + \cos^{-1} \left( \frac{2x}{1 + x^2} \right).
\]
Recall that the sum of inverse sine and inverse cosine of complementary angles is \( \frac{\pi}{2} \), i.e.
\[\sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}.\]
By manipulating the given expression and using this identity, we can see that the values of \( \sin^{-1} \left( \frac{1 + x^2}{2x} \right) \) and \( \cos^{-1} \left( \frac{2x}{1 + x^2} \right) \) must add up to \( \frac{\pi}{2} \). Therefore, the range of \( f(x) \) is a constant value, specifically \( \frac{\pi}{2} \).