Question:

If a random variable X X has the following probability distribution, then its variance is nearly: 
random variable

Show Hint

To find the variance of a probability distribution, compute E(X2) E(X^2) and use Var(X)=E(X2)(E(X))2 \text{Var}(X) = E(X^2) - (E(X))^2 .
Updated On: Mar 24, 2025
  • 2.8875 2.8875
  • 2.9875 2.9875
  • 2.7865 2.7865
  • 2.785 2.785
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Step 1: Verify that probabilities sum to 1
We have: 0.05+0.1+2K+0+0.3+K+0.1=1. 0.05 + 0.1 + 2K + 0 + 0.3 + K + 0.1 = 1. Solving for K K : 2K+K=1(0.05+0.1+0.3+0.1)=10.55=0.45. 2K + K = 1 - (0.05 + 0.1 + 0.3 + 0.1) = 1 - 0.55 = 0.45. 3K=0.45K=0.15. 3K = 0.45 \Rightarrow K = 0.15. Step 2: Compute Expectation E(X) E(X)
E(X)=xP(X=x). E(X) = \sum x P(X=x). =(3)(0.05)+(2)(0.1)+(1)(2K)+(0)(0)+(1)(0.3)+(2)(K)+(3)(0.1). = (-3)(0.05) + (-2)(0.1) + (-1)(2K) + (0)(0) + (1)(0.3) + (2)(K) + (3)(0.1). =(0.15)+(0.2)+(0.3)+0+0.3+0.3+0.3=0. = (-0.15) + (-0.2) + (-0.3) + 0 + 0.3 + 0.3 + 0.3 = 0. Step 3: Compute E(X2) E(X^2)
E(X2)=x2P(X=x). E(X^2) = \sum x^2 P(X=x). =(3)2(0.05)+(2)2(0.1)+(1)2(2K)+(0)2(0)+(1)2(0.3)+(2)2(K)+(3)2(0.1). = (-3)^2(0.05) + (-2)^2(0.1) + (-1)^2(2K) + (0)^2(0) + (1)^2(0.3) + (2)^2(K) + (3)^2(0.1). =(9)(0.05)+(4)(0.1)+(1)(0.3)+0+(1)(0.3)+(4)(0.15)+(9)(0.1). = (9)(0.05) + (4)(0.1) + (1)(0.3) + 0 + (1)(0.3) + (4)(0.15) + (9)(0.1). =0.45+0.4+0.3+0.3+0.6+0.9=2.8875. = 0.45 + 0.4 + 0.3 + 0.3 + 0.6 + 0.9 = 2.8875. Step 4: Compute Variance σ2(X) \sigma^2(X)
Var(X)=E(X2)(E(X))2. \text{Var}(X) = E(X^2) - (E(X))^2. Since E(X)=0 E(X) = 0 , Var(X)=2.887502=2.8875. \text{Var}(X) = 2.8875 - 0^2 = 2.8875. Step 5: Conclusion
Thus, the final answer is: 2.8875. \boxed{2.8875}.
Was this answer helpful?
0
0

Top Questions on Probability and Statistics

View More Questions