Step 1: Verify that probabilities sum to 1
We have:
\[
0.05 + 0.1 + 2K + 0 + 0.3 + K + 0.1 = 1.
\]
Solving for \( K \):
\[
2K + K = 1 - (0.05 + 0.1 + 0.3 + 0.1) = 1 - 0.55 = 0.45.
\]
\[
3K = 0.45 \Rightarrow K = 0.15.
\]
Step 2: Compute Expectation \( E(X) \)
\[
E(X) = \sum x P(X=x).
\]
\[
= (-3)(0.05) + (-2)(0.1) + (-1)(2K) + (0)(0) + (1)(0.3) + (2)(K) + (3)(0.1).
\]
\[
= (-0.15) + (-0.2) + (-0.3) + 0 + 0.3 + 0.3 + 0.3 = 0.
\]
Step 3: Compute \( E(X^2) \)
\[
E(X^2) = \sum x^2 P(X=x).
\]
\[
= (-3)^2(0.05) + (-2)^2(0.1) + (-1)^2(2K) + (0)^2(0) + (1)^2(0.3) + (2)^2(K) + (3)^2(0.1).
\]
\[
= (9)(0.05) + (4)(0.1) + (1)(0.3) + 0 + (1)(0.3) + (4)(0.15) + (9)(0.1).
\]
\[
= 0.45 + 0.4 + 0.3 + 0.3 + 0.6 + 0.9 = 2.8875.
\]
Step 4: Compute Variance \( \sigma^2(X) \)
\[
\text{Var}(X) = E(X^2) - (E(X))^2.
\]
Since \( E(X) = 0 \),
\[
\text{Var}(X) = 2.8875 - 0^2 = 2.8875.
\]
Step 5: Conclusion
Thus, the final answer is:
\[
\boxed{2.8875}.
\]