We are given that in a triangle \(ABC\), \[ r_1 = 2r_2 = 3r_3 \] Where: - \( r_1, r_2, r_3 \) are the exradii opposite to angles \( A, B, C \) respectively.
Step 1: Recall the Exradius Property
In a triangle, \[ r_1 = \frac{K}{s - a}, \quad r_2 = \frac{K}{s - b}, \quad r_3 = \frac{K}{s - c} \] Where: - \( K \) is the area of the triangle - \( s \) is the semi-perimeter \( s = \frac{a + b + c}{2} \)
Step 2: Express the Ratios in Terms of \( r_3 \)
Since \( r_1 = 2r_2 = 3r_3 \), we assign: \[ r_3 = k \] Then, \[ r_2 = \frac{r_1}{2} = \frac{3r_3}{2} = \frac{3k}{2} \] \[ r_1 = 3r_3 = 3k \]
Step 3: Relating \( r_1, r_2, r_3 \) with the Sine Rule
By the sine rule in a triangle: \[ \frac{\sin A}{r_1} = \frac{\sin B}{r_2} = \frac{\sin C}{r_3} \] This implies: \[ \sin A : \sin B : \sin C = r_1 : r_2 : r_3 \] Using the values from Step 2: \[ \sin A : \sin B : \sin C = 3k : \frac{3k}{2} : k \]
Step 4: Simplifying the Ratios
\[ \sin A : \sin B : \sin C = 6 : 3 : 2 \] Dividing each term by 1.2: \[ \sin A : \sin B : \sin C = 5 : 4 : 3 \]
Final Answer: \( \boxed{5 : 4 : 3} \)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))