Step 1: Rewrite the integral.
Let I = \(\int\frac{2x^{2}\cos(x^{2})-\sin(x^{2})}{x^{2}}dx\).
We can rewrite the integral as: I = \(\int\left(2\cos(x^{2}) - \frac{\sin(x^{2})}{x^{2}}\right)dx\)
Step 2: Use substitution.
Let u = x^2. Then \(\frac{du}{dx} = 2x\), so du = 2x dx.
We can rewrite the integral as: I = \(\int\left(2\cos(u) - \frac{\sin(u)}{u}\right)dx\)
Step 3: Recognize the derivative of a quotient.
We can rewrite the integral as: I = \(\int\left(\frac{2x^2\cos(x^2) - \sin(x^2)}{x^2}\right)dx\)
Notice that this looks like the derivative of a quotient.
Let f(x) = \(\frac{\sin(x^2)}{x}\).
Then f'(x) = \(\frac{x(2x\cos(x^2)) - \sin(x^2)(1)}{x^2} = \frac{2x^2\cos(x^2) - \sin(x^2)}{x^2}\).
Step 4: Integrate.
Since f'(x) = \(\frac{2x^2\cos(x^2) - \sin(x^2)}{x^2}\), we have:
I = \(\int f'(x) dx = f(x) + c = \frac{\sin(x^2)}{x} + c\)
Therefore, the integral is \(\frac{\sin(x^{2})}{x}+c\).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))