The given series is:
\[
S = \sum_{n=1}^{50} \frac{1}{(4n - 1)(4n + 3)}.
\]
Step 1: Partial Fraction Decomposition
We express each term using partial fractions:
\[
\frac{1}{(4n - 1)(4n + 3)} = \frac{A}{4n - 1} + \frac{B}{4n + 3}.
\]
Multiplying both sides by \( (4n - 1)(4n + 3) \), we get:
\[
1 = A(4n + 3) + B(4n - 1).
\]
Expanding and equating coefficients:
\[
1 = (4A + 4B)n + (3A - B).
\]
Solving for \( A \) and \( B \):
\[
4A + 4B = 0, \quad 3A - B = 1.
\]
From the first equation, \( A + B = 0 \Rightarrow B = -A \). Substituting in the second equation:
\[
3A - (-A) = 1 \Rightarrow 4A = 1 \Rightarrow A = \frac{1}{4}, \quad B = -\frac{1}{4}.
\]
Step 2: Telescoping the Series
Thus, rewriting the general term:
\[
\frac{1}{(4n - 1)(4n + 3)} = \frac{1}{4} \left( \frac{1}{4n - 1} - \frac{1}{4n + 3} \right).
\]
Summing over 50 terms:
\[
S = \frac{1}{4} \sum_{n=1}^{50} \left( \frac{1}{4n - 1} - \frac{1}{4n + 3} \right).
\]
This forms a telescoping series, where most terms cancel, leaving:
\[
S = \frac{1}{4} \left( \frac{1}{3} - \frac{1}{203} \right).
\]
Step 3: Evaluating the Final Expression
\[
S = \frac{1}{4} \times \frac{203 - 3}{3 \times 203} = \frac{1}{4} \times \frac{200}{609} = \frac{50}{609}.
\]
Thus, the sum of the series is:
\[
\boxed{\frac{50}{609}}
\]